Claim Missing Document
Check
Articles

Found 4 Documents
Search

PEMILIHAN STRATEGI ENERGI UNTUK MENDORONG PEMANFAATAN EBT DI SEKTOR TRANSPORTASI permana, adhi d; yudiartono, yudiartono; fitriana, ira; Dewi, Ratna E. P; zuldian, prima
Jurnal Sains dan Teknologi Indonesia Vol. 14 No. 2 (2012)
Publisher : Badan Pengkajian dan Penerapan Teknologi

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (225.001 KB) | DOI: 10.29122/jsti.v14i2.910

Abstract

The transportation sector is the second largest final energy consumer after the industry sector. The main energy issue in the transportation sector in Indonesia is the dominant use of oil fuels. Moreover, almost 60% of total oil fuels are being subsidized. On the contrary, the development and application of New and Renwable Energy (NRE) in the transportation sector has not been very successful. This paper applies the Analytical Hirarchy Process (AHP) in conjuction with optimization of the energy system using MARKAL model to select the best strategy for increasing the role of New and Renewable Energy (NRE) in the transportation sector. Three case studies are applied to evaluate the intervention by policy as an effort to increase the role of NRE in the transportation sector.
ANALISIS KEEKONOMIAN PEMBANGUNAN PEMBANGKIT LISTRIK TENAGA BIOGAS DARI POME DENGAN CONTINUOUS STIRRED TANK REACTOR (CSTR) Sugiyono, Agus; Adiarso, Adiarso; Puspita Dewi, Ratna Etie; Yudiartono, Yudiartono; Wijono, Agung; Larasati, Niken
Majalah Ilmiah Pengkajian Industri Vol. 13 No. 1 (2019): Majalah Ilmiah Pengkajian Industri
Publisher : Deputi TIRBR-BPPT

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (893.039 KB) | DOI: 10.29122/mipi.v13i1.3232

Abstract

Limbah cair kelapa sawit atau dikenal dengan POME (palm oil mill effluent) dapat diproses menjadi biogas sebagai bahan bakar untuk pembangkit listrik. Produksi POME saat ini dapat digunakan untuk pembangkit listrik tenaga biogas (PLTBg) dengan kapasitas mencapai 153,4 MW yang sebagian besar berada di wilayah Sumatera. Salah satu pabrik kelapa sawit (PKS) yang berpotensi untuk pembangunan PLTBg adalah PKS Sei Pagar milik PTPN V Pekanbaru. Studi ini bertujuan untuk melakukan analisis keekonomian pembangunan PLTBg. PLTBg didesain dengan kapasitas 700 kW dengan menggunakan biodigester jenis continuous stirred tank reactor (CSTR). Listrik yang dihasilkan akan dijual ke PLN dengan harga jual sebesar 85% biaya pokok penyediaan (BPP) pembangkitan wilayah Riau sebesar 1.249,5 Rp/kWh. Hasil perhitungan keekonomian menunjukkan bahwa biaya investasi mencapai 26,3 milar Rupiah dengan skema 70% pinjaman dari bank dan sisanya 30% dengan modal sendiri (equity). Biaya opersi dan perawatan mencapai 2,3 miliar Rupiah setiap tahun. Pembangunan PLTBg layak untuk dilaksanakan dengan nilai IRR sebesar 11,44%, waktu pengembalian modal selama 7 tahun 11 bulan, dan NPV sebesar 1.1 miliar Rupiah.
Dekarbonisasi Sektor Ketenagalistrikan Sampai 2050 Dalam Kerangka Kebijakan Energi Nasional Yudiartono, Yudiartono; Jaka, Windarta; Adiarso, Adiarso
Jurnal Energi Baru dan Terbarukan Vol 4, No 2 (2023): Juli 2023
Publisher : Program Studi Magister Energi, Sekolah Pascasarjana, Universitas Diponegoro, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/jebt.2023.16966

Abstract

Dekarbonisasi sektor ketenagalistrikan akan bertumpu pada pembangkit EBT jenis PLTS, PLTA dan PLTA pumped storage, PLTP, PLTBm serta PLTN. Pada tahun 2025, produksi listrik dari EBT pada skenario transisi energi (TE) maupun nuklir (NK) diperkirakan  sebesar 145,35 TWh, lebih tinggi 28% dibanding skenario BAU. Pembangkit EBT  yang berkontribusi adalah PLTA dan PLTA pumped storage (62,24 TWh), PLTS (12,26 TWh), PLTP (29,76 TWh) dan EBT lainnya (41,09 TWh). Adapun PLTN akan mulai berkontribusi pada tahun 2035. Pada tahun 2050 diprediksi produksi listrik EBT pada skenario TE dan NK berturut-turut akan mencapai 566,93 TWh dan 722,33 TWh, masing-masing lebih tinggi 77% dan 126% dibanding skenario BAU yang hanya sebesar 319,44 TWh. Khusus untuk PLTN, pada skenario TE, total energi listrik yang akan dihasilkan pada tahun 2050 tersebut adalah sebesar 29,78 TWh. Sedangkan pada skenario NK, kontribusi dari PLTN naik signifikan menjadi 186,15 TWh. Selanjutnya, proyeksi bauran energi primer EBT  pada tahun 2025 dan 2050, untuk skenario BAU, pangsanya berturut turut sebesar 18,17% dan 19,48%, jauh lebih rendah dari target KEN. Namun hal yang berbeda terjadi pada skenario TE, dimana kontribusi EBT mencapai 23,09% (2025) dan 31,33% (2050), sesuai dengan target KEN. Pada skenario NK, dimana penerapan PLTN mencapai 25 GW pada tahun 2050, bauran energi primer berbasis EBT naik signifikan menjadi 36,69%, serta emisi GRK turun menjadi 695,28 juta metric ton CO2eq , lebih rendah berturut turut sebesar 7% dan 17% dibanding dengan skenario BAU dan skenario TE.
Renewable energy in sustainable cities: Challenges and opportunities by the case study of Nusantara Capital City (IKN) Yudiartono, Yudiartono; Santosa, Joko; Fitriana, Ira; Wijaya, Prima Trie; Rahardjo, Irawan; Abdul Wahid, La Ode Muhammad; Siregar, Erwin; Hesty, Nurry Widya; Fithri, Silvy Rahmah; Sugiyono, Agus
International Journal of Renewable Energy Development Vol 13, No 6 (2024): November 2024
Publisher : Center of Biomass & Renewable Energy (CBIORE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61435/ijred.2024.60390

Abstract

This study explores strategies for optimizing energy consumption in Indonesia's New Capital City (IKN) to achieve net zero emissions by 2045, focusing on energy efficiency, sustainable mobility, and renewable energy through the Low Emissions Analysis Platform (LEAP) model. Sustainable cars, such as renewable-energy-powered electric and green hydrogen-powered vehicles, can reduce energy consumption by 43% in 2045 and 33% in 2060, respectively, compared to BAU. GHG emissions per capita will drop 70% in 2045 and 63% in 2060. In NZE scenario, IKN can reach 100% green energy by 2045 with a 4.4 GW solar power plant, a 0.92 GWh BESS, and a full load hour capability of 4 hours. By 2045, 1.1 GW of hydropower and 143 MW of wind power are expected to be utilized. In 2060, hydropower will be 2.8 GW, wind power will be 184 MW, and solar power will be 8 GW with 1.6 GWh of BESS. Lack of legislation, technical expertise, high prices, inadequate grid infrastructure, and renewables shortfalls restrict Indonesia's BESS. Solar installation criteria, subsidies, and off-grid project incentives can all help ease BESS use. Forecasts predict 0.53 GW of rooftop solar PV capacity by 2045 and 3.35 GW by 2060. Net metering and solar tariffs boost rooftop solar system profitability. One ton of green hydrogen production requires 55.7 MWh from a solar power plant. Solar power plant capacity will rise to 0.49 GW by 2045, producing 19,359 tons of green hydrogen, and almost quintuple to 89,594 tons by 2060. Hydrogen generation, storage, transit, and distribution require specific infrastructure due to high capital costs and a lack of networks, yet interest in them is growing.