Claim Missing Document
Check
Articles

Found 6 Documents
Search

Total vertex irregularity strength for trees with many vertices of degree two Rinovia Simanjuntak; Susilawati Susilawati; Edy Tri Baskoro
Electronic Journal of Graph Theory and Applications (EJGTA) Vol 8, No 2 (2020): Electronic Journal of Graph Theory and Applications
Publisher : GTA Research Group, Univ. Newcastle, Indonesian Combinatorics Society and ITB

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/ejgta.2020.8.2.17

Abstract

For a simple graph G = (V,E), a mapping φ : V ∪ E → {1,2,...,k} is defined as a vertex irregular total k-labeling of G if for every two different vertices x and y, wt(x) ≠ wt(y), where wt(x) = φ(x)+ Σ????xy∈E(G) φ(xy). The minimum k for which the graph G has a vertex irregular total k-labeling is called the total vertex irregularity strength of G. In this paper, we provide three possible values of total vertex irregularity strength for trees with many vertices of degree two. For each of the possible values, sufficient conditions for trees with corresponding total vertex irregularity strength are presented.
Total vertex irregularity strength of trees with maximum degree five S. Susilawati; Edy Tri Baskoro; Rinovia Simanjuntak
Electronic Journal of Graph Theory and Applications (EJGTA) Vol 6, No 2 (2018): Electronic Journal of Graph Theory and Applications
Publisher : GTA Research Group, Univ. Newcastle, Indonesian Combinatorics Society and ITB

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/ejgta.2018.6.2.5

Abstract

In 2010, Nurdin, Baskoro, Salman and Gaos conjectured that the total vertex irregularity strength of any tree T is determined only by the number of vertices of degrees 1, 2 and 3 in T. This paper will confirm this conjecture by considering all trees with maximum degree five. Furthermore, we also characterize all such trees having the total vertex irregularity strength either t1, t2 or t3, where $t_{i} = \lceil (1+\sum\sb{j=1}\sp{i}n_{j})/(i+1)\rceil$ and ni is the number of vertices of degree i.
The Hamiltonian and Hypohamiltonian of Generalized Petersen Graph (GP_(n,9)) Susilawati, Susilawati; Nasfianti, Iis; Agustiarini, Efni; Nasution, Dinda Khairani
Jambura Journal of Mathematics Vol 7, No 1: February 2025
Publisher : Department of Mathematics, Universitas Negeri Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37905/jjom.v7i1.30053

Abstract

The study of Hamiltonian and Hypohamiltonian properties in the generalized Petersen graph GP_{n,k} is interesting due to the unique structure and characteristics of these graphs. The method employed in this study involves searching for Hamiltonian cycles within the generalized Petersen graph GP_{n,9}. Not all of GP_{n,9} graphs are Hamiltonian. For certain values of n, if the graph does not contain a Hamiltonian cycle, then one vertex should be removed from the graph to become Hamiltonian or neither. This research specifically investigates the Hypohamiltonian property of GP_{n,9}. The results show that for n ≡ 3 (mod 19) and n ≡ 5 (mod 19), GP_{n,9} is Hamiltonian. Meanwhile, for n ≡ 0 (mod 19), GP_{n,9} is Hypohamiltonian. Furthermore, for n ≡ 1 (mod 19), n ≡ 2 (mod 19), and n ≡ 4 (mod 19), GP_{n,9} is neither Hamiltonian nor Hypohamiltonian.
PELATIHAN PEMBUATAN ECO-ENZYME SEBAGAI INTEGRASI PEMBELAJARAN SAINS DALAM KEGIATAN P5 UNTUK GURU-GURU SAINS DI KECAMATAN TUALANG KABUPATEN SIAK Maria Erna; Lenny Anwar; Susilawati Susilawati; Asmadi M. Noer; Abdullah Abdullah; Putri Adita Wulandari
Community Development Journal : Jurnal Pengabdian Masyarakat Vol. 6 No. 2 (2025): Volume 6 No. 2 Tahun 2025
Publisher : Universitas Pahlawan Tuanku Tambusai

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31004/cdj.v6i2.38613

Abstract

Kurikulum Merdeka menekankan pembelajaran berbasis proyek untuk meningkatkan keterampilan dan potensi siswa. Salah satu implementasinya adalah Projek Penguatan Profil Pelajar Pancasila (P5), yang mendorong siswa untuk terlibat aktif dengan lingkungan sekitar. Pelatihan ini bertujuan untuk memperkenalkan konsep zero waste sekaligus memberikan keterampilan praktis kepada guru untuk mendekatkan siswa pada isu lingkungan. Pelaksanaan kegiatan dilakukan melalui penyampaian materi, demonstrasi, praktik langsung, serta pendampingan. Hasil evaluasi dari 16 peserta menunjukkan respons positif terhadap pelatihan, dengan 100% peserta mengakui manfaat, kemudahan, dan relevansi materi pelatihan. Faktor utama keberhasilan adalah antusiasme peserta dan kerja sama yang solid antara tim pengabdi dan pihak sekolah. Pelatihan ini memberikan kontribusi nyata dalam mendukung pendidikan berbasis lingkungan dan pembelajaran terdiferensiasi pada Kurikulum Merdeka.
HAMILTONIAN CYCLES IN WIJAYA KUSUMA FLOWER GRAPH Nurdin, Susilawati; Nasution, Dinda Khairani
Jurnal Matematika UNAND Vol. 14 No. 2 (2025)
Publisher : Departemen Matematika dan Sains Data FMIPA Universitas Andalas Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/jmua.14.2.167-177.2025

Abstract

In 1856, William Rowan Hamilton introduced the Icosian game. From this game, the concept of a Hamiltonian graph is defined. Hamiltonian graph is a graph that contains the Hamiltonian cycle, which is a cycle that passes through each vertex exactly once. We constructed a new class of graph which is inspired by the Wijaya Kusuma flower. In this article, we study the Hamiltonian properties of the Wijaya Kusuma flower graph. Based on the proof, it is concluded that the Wijaya Kusuma flower graph is a Hamiltonian graph.
Modular Version of The Total Vertex Irregularity Strength for The Generalized Petersen Graph Nasution, Dina Khairani; Susilawati
Jurnal Fourier Vol. 14 No. 1 (2025)
Publisher : Program Studi Matematika Fakultas Sains dan Teknologi UIN Sunan Kalijaga Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14421/fourier.2025.141.1-8

Abstract

Let be a graph. A labeling graph is a maps function of the set of vertices and/or edges of , to the set of positive integers. A total modular labeling is said to be a -modular total irregular labeling of the vertices of , if for every two distinct vertices and in , the modular weights are different, and belong to the set of integers . The minimum such that the graph has a - modular total irregular labeling is called the modular total vertex irregularity strength and denoted by . In this paper, we study about the modular total vertex irregularity strength for the generalized Petersen graph . The result show that the exact value is .