Claim Missing Document
Check
Articles

Found 15 Documents
Search

Local Metric Dimension of Certain Operation of Generalized Petersen Graph Tadjuddin, Nur Fahri; Nikbakht, Samaneh
InPrime: Indonesian Journal of Pure and Applied Mathematics Vol 7, No 1 (2025)
Publisher : Department of Mathematics, Faculty of Sciences and Technology, UIN Syarif Hidayatullah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/inprime.v7i1.41320

Abstract

A subset W of V(G) is called a local resolving set of G if r(u│W)≠r(v│W) for every two adjacent vertices u,v∈V(G). The smallest cardinality of all local resolving sets in G is called the local metric dimension of G, denoted by lmd(G). The local resolving set of G with cardinality lmd⁡(G) is called a local basis of G. In this paper, we present a novel study, a topic that has not been extensively explored in previous research, on the local metric dimension of certain operation of generalized Petersen graph sP_(n,1) and determine the lower and upper bounds of lmd(sP_(n,m)) with n≥3, s≥1, and 1≤m≤⌊(n-1)/2⌋. We also show that the lower bound is sharp.Keywords: Generalized Petersen graph; Local metric dimension; Local resolving set. AbstrakSuatu subset W dari V(G) dikatakan himpunan pembeda lokal dari G jika r(u│W)≠r(v│W) untuk setiap dua titik bertetangga u,v∈V(G). Kardinalitas terkecil dari semua himpunan pembeda lokal di G disebut dimensi metrik lokal dari G, dinotasikan lmd(G). Himpunan pembeda lokal G dengan kardinalitas lmd(G) disebut basis lokal dari G. Pada artikel ini, disajikan sebuah studi baru, topik yang belum dieskplorasi secara ekstensif dalam penelitian sebelumnya, tentang dimensi metrik lokal dari graf hasil operasi tertentu untuk graf Petersen diperumum sP_(n,1) dan menentukan batas atas dan bawah dari lmd(sP_(n,1)) dengan n≥3, s≥1, dan 1≤m≤⌊(n-1)/2⌋. Kami juga menunjukkan bahwa batas bawah tersebut tajam.Kata Kunci: Graf Petersen diperumum, Dimensi metrik local; Himpunan pembeda local. 2020MSC: 05C12, 05C76
PENGARUH TEMAN SEBAYA TERHADAP MOTIVASI BERPRESTASI DAN PRESTASI BELAJAR MATEMATIKA SISWA Amran Yahya; Rahmania Rahmania; Nur Fahri Tadjuddin
Nabla Dewantara: Jurnal Pendidikan Matematika Vol. 7 No. 2 (2022): Nabla Dewantara: Jurnal Pendidikan Matematika
Publisher : FKIP Universitas Tamansiswa Palembang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51517/nabla.v7i2.101

Abstract

Teman sebaya secara signifikan mempengaruhi interaksi sosial siswa. Penelitian ini bertujuan untuk mengetahui pengaruh teman sebaya terhadap motivasi berprestasi dan prestasi belajar siswa kelas XII MA Pergis Campalagian dalam pembelajaran matematika. Jenis penelitian yang digunakan adalah ex-post facto serta menggunakan teknik sampling jenuh dengan memilih 51 siswa sebagai sampel penelitian. Sebagai metode pengumpulan data digunakan angket motivasi berprestasi dan angket teman sebaya serta dokumentasi data prestasi belajar matematika. Hasil penelitian: Data rata-rata jumlah teman sebaya adalah 102, dan modusnya adalah 120, menunjukkan bahwa sebagian besar siswa berada pada kategori tinggi. Rata-rata skor motivasi berprestasi sebesar 89 berada pada kategori sedang, dan rata-rata skor prestasi belajar matematika sebesar 82 berada pada kategori C atau cukup. Hasil uji Manova menunjukkan bahwa H0 ditolak sedangkan H1 diterima karena nilai Sig lebih kecil dari 0,05. Disimpulkan bahwa terdapat pengaruh teman sebaya terhadap motivasi berprestasi dan prestasi belajar matematika siswa kelas XII MA Pergis Campalagian.
Local Metric Dimension of the Line Graph of a Generalized Petersen Graph Tadjuddin, Nur Fahri
Proximal: Jurnal Penelitian Matematika dan Pendidikan Matematika Vol. 8 No. 1 (2025): Integrasi Matematika, Teknologi, dan Budaya dalam Pendidikan dan Aplikasi Terap
Publisher : Universitas Cokroaminoto Palopo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30605/proximal.v8i1.4707

Abstract

Let G be a graph that has a vertex set V(G) and an edge set E(G). Let W={w_1,w_2,…w_k} be a subset of V(G). The representation of a vertex v∈V(G) with respect to W, denoted by r(v|W), is defined as k-vector (d(v,w_1 ),d(v,w_2 ), …, d(v,w_k )). A set W is called a local resolving set of G if r(u│W)≠r(v│W) for every two adjacent vertices u,v∈V(G). The smallest cardinality of all local resolving set in G is called the local metric dimension of G, denoted by lmd(G). The local resolving set of G with cardinality lmd⁡(G) is called a local basis of G. In this paper, we determine the local metric dimension of the line graph of generalized Petersen graph P_(n,1).
Local Metric Dimension of Certain Operation of Generalized Petersen Graph Tadjuddin, Nur Fahri; Nikbakht, Samaneh
InPrime: Indonesian Journal of Pure and Applied Mathematics Vol. 7 No. 1 (2025)
Publisher : Department of Mathematics, Faculty of Sciences and Technology, UIN Syarif Hidayatullah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/inprime.v7i1.41320

Abstract

A subset W of V(G) is called a local resolving set of G if r(u│W)≠r(v│W) for every two adjacent vertices u,v∈V(G). The smallest cardinality of all local resolving sets in G is called the local metric dimension of G, denoted by lmd(G). The local resolving set of G with cardinality lmd⁡(G) is called a local basis of G. In this paper, we present a novel study, a topic that has not been extensively explored in previous research, on the local metric dimension of certain operation of generalized Petersen graph sP_(n,1) and determine the lower and upper bounds of "lmd(" sP_(n,m)) with n≥3, s≥1, and 1≤m≤⌊(n-1)/2⌋ . We also show that the lower bound is sharp.Keywords: local resolving set; local metric dimension; generalized Petersen graph.AbstrakSuatu subset W dari V(G) dikatakan himpunan pembeda lokal dari G jika r(u|W) ≠ r(v|W) untuk setiap dua titik bertetangga u,v∈V(G). Kardinalitas terkecil dari semua himpunan pembeda lokal di G disebut dimensi metrik lokal dari G, dinotasikan lmd(G). Himpunan pembeda lokal G dengan kardinalitas lmd(G) disebut basis lokal dari G. Pada artikel ini, disajikan sebuah studi baru, topik yang belum dieskplorasi secara ekstensif dalam penelitian sebelumnya, tentang dimensi metrik lokal dari graf hasil operasi tertentu untuk graf Petersen diperumum sP_(n,1) dan menentukan batas atas dan bawah dari lmd(sP_(n,m)) dengan n≥3, s≥1, dan 1≤m≤⌊(n-1)/2⌋. Kami juga menunjukkan bahwa batas bawah tersebut tajam.Kata Kunci: himpunan pembeda local; dimensi metrik local; graf Petersen diperumum.2020MSC: 05C12, 05C76
Analysis of Students' Critical Thinking Skills in Learning Mathematics as Seen in The Face of Mathematics Anxiety Tandaria, Tandaria; Tadjuddin, Nur Fahri; Anaguna, Nursyam
Rangkiang Mathematics Journal Vol. 4 No. 2 (2025): Rangkiang Mathematics Journal
Publisher : Department of Mathematics, Universitas Negeri Padang (UNP)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24036/rmj.v4i2.80

Abstract

The problems found in SMP Negeri 4 Majene are low critical thinking skills, excessive mathematical anxiety of students, students often feel heart palpitations and cold sweats. The purpose of this study is to analyze students' critical thinking skills in mathematics learning in terms of mathematical anxiety. The type of research used is descriptive qualitative research. The subjects of this study were 26 students of class VII. A of SMP Negeri 4 Majene consisting of 17 female students and 9 male students. Then, 9 subjects were selected who had high, medium, and low mathematical anxiety categories using purposive sampling techniques. The instruments used were a mathematical anxiety questionnaire, a test of students' critical thinking abilities, and interview guidelines. This study shows that students with low mathematical anxiety categories are better than students with medium and high mathematical anxiety categories. So, it can be concluded that students with low mathematical anxiety have higher critical thinking abilities than students with moderate levels of mathematical anxiety, and students with moderate levels of mathematical anxiety have higher critical thinking abilities than students with high levels of mathematical anxiety.