Claim Missing Document
Check
Articles

Found 13 Documents
Search

Analysis Of User Experience Of ChatGPT And Gemini Users Using The User Experience Quistionnaire (UEQ) For Education Nasrul, Ilham; Angraini, Angraini; Hamzah, Muhammad Luthfi; Saputra, Eki
Jurnal Sisfokom (Sistem Informasi dan Komputer) Vol. 13 No. 3 (2024): NOVEMBER
Publisher : ISB Atma Luhur

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32736/sisfokom.v13i3.2250

Abstract

AI is becoming more and more crucial in the digital age to support kids in overcoming obstacles to learning and succeeding academically. The use of chatbots is one example of AI progress. Two well-known chatbots are Gemini and ChatGPT. Because they are useful and support a variety of learning tasks, including answering questions, producing articles, expanding knowledge, and other academic activities, both applications are highly well-liked and preferred by students. By using a case study on the Facebook community with the number of samples needed in this study as many as 377 respondents based on the Krejcie and Morgan formula, The purpose of this study was to determine whether user experiences with different applications differed. User experience measurement was carried out using the User Experience Questionnaire (UEQ) approach on the variables of Efficiency, Novelty, Attractiveness, Stimulation, Perspicuity, and Dependability. The results of the study show that all user experience variables for the ChatGPT and Gemini applications received poor ratings, and there were no significant differences in any of these variables. However, based on UEQ measurements, it was found that both applications received better scores on the stimulation and novelty variables, while the attractiveness, clarity, efficiency, and accuracy variables received poor results. To improve user experience in the ChatGPT and Gemini applications, the quality of all variables needs to be enhanced.
Analisis Sentimen Masyarakat Terhadap Kebocoran Pusat Data Nasional Sementara Menggunakan Algoritma Random Forest dan Support Vector Machine Basri, Faishal Khairi; Afdal, M; Angraini, Angraini; Rozanda, Nesdi Evrilyan
Building of Informatics, Technology and Science (BITS) Vol 7 No 2 (2025): September 2025
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v7i2.7473

Abstract

A ransomware attack on Indonesia’s Temporary National Data Center (PDNS) in June 2024 triggered major public concern over data security and government preparedness. This study aims to analyze public sentiment toward the incident using an Aspect-Based Sentiment Analysis approach on 2,700 Indonesian-language tweets collected from the X platform. The research follows the SEMMA (Sample, Explore, Modify, Model, Assess) methodology, involving text preprocessing, aspect extraction using part-of-speech tagging and named entity recognition, feature representation using Term Frequency-Inverse Document Frequency, and aspect refinement through semantic coherence. Extracted aspects are grouped into five categories: data security, institutions, infrastructure, politics and economy, and impact. Sentiment classification is carried out using the IndoBERTweet model. Results indicate a strong dominance of negative sentiment, particularly in the infrastructure and institutional categories, with no positive sentiment recorded in the political and economic aspect. To address class imbalance in sentiment distribution, the Synthetic Minority Oversampling Technique is applied during model training. Performance evaluation of two algorithms—Random Forest and Support Vector Machine—shows that Random Forest performs best, achieving 96% accuracy on a 70:30 data split and 99.05% average accuracy using 10-fold cross-validation. These findings highlight the effectiveness of aspect-based sentiment analysis and demonstrate Random Forest's superiority in handling imbalanced sentiment classification tasks.
ANALISA LAYANAN WEBSITE BADAN PUSAT STATISTIKA KOTA PEKANBARU TERHADAP KEPUASAN PENGGUNA MENGGUNAKAN METODE E-S-QUAL Ningsih, Widiah; Ahsyar, Tengku Khairil; Angraini, Angraini; Syaifullah, Syaifullah
JOISIE (Journal Of Information Systems And Informatics Engineering) Vol 8 No 1 (2024)
Publisher : Institut Bisnis dan Teknologi Pelita Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35145/joisie.v8i1.4126

Abstract

Perkembangan teknologi saat ini telah membuat website menjadi komponen yang sangat penting. Penggunaan TI pada website juga banyak digunakan seperti pada instansi pemerintahan. Salah satu penerapan website pada instansi pemerintah diterapkan pada Badan Pusat Statistika (BPS) Kota Pekanbaru. Namun, dalam penginplementasi penggunaan website BPS Kota Pekanbaru ditemukan kendala diantaranya yaitu, Situs website belum sepenuhnya memudahkan untuk menemukan apa yang dibutuhkan pengguna, Informasi di website belum di atur dengan baik, website belum menjawab pertanyaan dalam waktu yang tepat, website belum memungkinkan pengguna untuk mengaksesnya dengan cepat. Dengan demikian, penelitian ini bertujuan untuk menganalisis persepsi atau sudut pandang pengguna yang melihat situs web BPS Kota Pekanbaru. Penelitian ini menggunakan metode E-S-Qual dengan 4 dimensi, yaitu Efficiency, Fulfillment, System Availability, and Privacy dan 23 items. Hasil penelitian menunjukkan bahwa dua variabel hipotesis berpengaruh; variabel privasi memiliki nilai T-statistic 2,027, dan variabel System Availability dengan nilai T-statistic 5,099 dimana kedua variabel tersebut nilai T-Statistic diatas nilai T-tabel > 1.96. Hal ini memberikan pengaruh positif dan signifikan kepuasan pengguna terhadap website BPS Kota Pekanbaru dalam menjaga privacy dan keberlangsungan akses pengguna website.