Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : JOURNAL OF SCIENCE AND SOCIAL RESEARCH

PERBANDINGAN OPTIMASI SGD, ADADELTA, DAN ADAM DALAM KLASIFIKASI HYDRANGEA MENGGUNAKAN CNN Desi Irfan; Rika Rosnelly; Masri Wahyuni; Jaka Tirta Samudra; Aditia Rangga
JOURNAL OF SCIENCE AND SOCIAL RESEARCH Vol 5, No 2 (2022): June 2022
Publisher : Smart Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.54314/jssr.v5i2.789

Abstract

Abstract - invasive species are threatening indigenous species habitat in many countries around the world. Nowadays, the monitoring method relies on scientists. Scientists are skilled to see the determined areas and record the living species. Applying high skill labors requires high cost, inefficient time and limited scope as the large area cannot be reached by the man. In this research, engine based learning approach was presented to identify the image of invasive hydrangea (indigenous species from Asia) with data collection around 800 images taken form the Brazil national forest and Hydrangea appears in some images. Gradient Descent optimization method is frequently used for artificial neural network. This method roles to discover standard grade for the best output. The Gradient Descent method role play is minimizing the cost function grade by changing the parameter grade step by step. Three optimization methods have been implemented namely Stochastic Gradient Descent (SGD), ADADELTA, and Adam in the artificial neural network (Ann) for classifying aritmia data [32]. This research used the most suitable error grade limitation from each optimization method as the indicators at the end of the training. The result of this research showed that artificial nerve tissue using Adam optimization gets the highest accuration compared with SDG and ADADELTA optimization methods. Deep Learning Technique applied extensively in image introduction is Adam optimization. The training model has reached accuration to 83, 5 % and showed properness of approach conducted. Keyword: SGD, Adadelta, Adam, Optimizer FunctionAbstrak— Spesies invasif mengancam habitat spesies asli di banyak negara di dunia. Saat ini dalam metode pemantauan mereka tergantung pada pengetahuan ahli. Ilmuwan terlatih mengunjungi area yang ditentukan dan mencatat spesies yang menghuninya. Menggunakan tenaga kerja berkualifikasi tinggi seperti itu membutuhkan biaya yang mahal, tidak efisien waktu dan jangkauan yang terbatas karena manusia tidak dapat mencakup area yang luas. Dalam makalah ini, pendekatan berbasis pembelajaran mesin disajikan untuk mengidentifikasi gambar hydrangea invasif (spesies invasif asli Asia) dengan kumpulan data yang berisi sekitar 800 gambar yang diambil di hutan nasional Brasil dan di beberapa gambar terdapat Hydrangea.  Metode optimasi Gradient Descent sering digunakan untuk pelatihan Jaringan Syaraf Tiruan (JST). Metode ini berperan dalam menemukan nilai bobot yang memberikan nilai keluaran terbaik. Prinsip kerja metode Gradient Descent adalah memperkecil nilai fungsi biaya dengan mengubah nilai parameter selangkah demi selangkah. Telah diimplementasikan tiga buah metode optimasi yaitu Stochastic Gradient Descent (SGD), ADADELTA, dan Adam pada sistem Jaringan Saraf Tiruan untuk klasifikasi data aritmia [32]. Penelitian ini menggunakan batas nilai kesalahan yang paling sesuai dari masing-masing metode optimasi  sebagai kriteria pemberhentian pelatihan. Hasil penelitian menunjukkan Jaringan Saraf Tiruan dengan optimasi Adam menghasilkan akurasi tertinggi dibandingkan dengan dengan metode optimasi SGD dan ADADELTA.Teknik Deep Learning  yang diterapkan secara ekstensif pada pengenalan gambar yang digunakan memanfaatkan metode optimizer Adam  . Model yang kita latih menggunakan fungsi optimisasi Adam mencapai akurasi 83,5% pada tes yang lakukan, menunjukkan kelayakan pada  pendekatan yang dilakukan .Kata Kunci— SGD, Adadelta, Adam, Fungsi Optimasi
IMPLEMENTASI JARINGAN SYARAF TIRUAN MENGGUNAKAN ALGORITMA BACKPROPAGATION DALAM MERAMALKAN KEBUTUHAN HANDSANITIZER DI PEMERINTAH KOTA MEDAN Junaidi Junaidi; Sartika Mandasari; Yuni Franciska; Agus Fahmi; Rika Rosnelly
JOURNAL OF SCIENCE AND SOCIAL RESEARCH Vol 5, No 3 (2022): October 2022
Publisher : Smart Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.54314/jssr.v5i3.1019

Abstract

Meningkatnya jumlah permintaan handsanitizer oleh operasi perangkat daerah (OPD) Pemerintah Kota Medan terjadi karena tuntutan kebutuhan menjaga kebersihan tangan dimasa pandemi. Hal ini berakibat pada melonjaknya kebutuhan pengadaan produk handsanitizer di Pemerintah Kota Medan tersebut. Untuk menyiasati peningkatan kebutuhan handsanitizer tersebut, maka pemasok produk perlu melakukan peramalan untuk meredam ketidakpastian yang akan muncul dari penyediaan produk tersebut. Penelitian ini dilakukan dengan menggunakan metode backpropagation pada jaringan syaraf tiruan untuk meramalkan kebutuhan produk tersebut. Pengolahan data hasil arsitektur jaringan syaraf tiruan dilakukan dengan mengunakan software Matlab 6.1.. Hasil penelitian ini menunjukkan bahwa pada bulan Januari hingga bulan Maret tahun 2022 sebaiknya di sediakan produk handsanitizer sebanyak 637, 642 dan 636 Pcs permasing-masing bulannya. Hasil peramalan ini menunjukkan nilai MSE setiap periode peramalan sebesar - 0.027, 0.066 dan -0.014. ketiga nilai MSE ini masih lebih kecil dari 10% sehingga hasil ramalan ini masih dapat dikatakan akurat.
Co-Authors Abwabul Jinan Aditia Rangga Agus Fahmi Akbar Idaman Alan Prayogi Alesia Lorenza Sinaga Alvinur Naswar Alvinur Naswar Ameliana Sihotang Anton Purnama Arselan Ashraf B. Herawan Hayadi Batubara, Muhammad Akbarri Bob Subhan Riza Cindy Paramitha Cindy Paramitha Dedi Irawan Dedi Irawan Della Syahrani Desi Irfan Dian Maya Sari Diky Wahyudi Edy Victor Haryanto, Edy Victor Eko Setyo Budi Putra Aji Elly Veronika Sihite Elsa Aditya Eri Triwanda Esmawaty Sinaga Finis Hermanto Laia Gusti Firanda Hardianto Hardianto Hardianto Hardianto Hartono Hartono Hetty Zahrani IQBAL GIFFARI RITONGA Jaka Kusuma Jaka Tirta Samudra Jazmi Hadi Matondang Junaidi Junaidi Karuniaman Buulolo Kristine Wau Linda Wahyuni Linda Wahyuni Linda Wahyuni Lubis, Cindy Paramitha M. Agung Oki Prayugo Maradona Jonas Simanullang MARIA BINTANG Masri Wahyuni Mega Christin Lase Mega Christin Morys Lase Mega Marisani Ziraluo Mimi Chintya Adelina Mira Kartiwi Muhammad Fachrurrozi Nasution Muhammad Sadikin Muhammad Zulkarnain Lubis Mutiara S. Simanjuntak Pius Deski Manalu Progresif Bulolo Progresif Bulolo5 Puji Sari Ramadhan Rabiatul Adawiyah Hasibuan Rahmatika Hizria Rais Affaruq Zunnurain Ramadhani Ritonga Ridha Maya Faza Lubis Rofiqoh Dewi Rohima, Rohima Rony, Zahara Tussoleha Roslina, Roslina Rubianto Rubianto Rubianto Sartika Mandasari Sarwadi Sarwadi Sarwadi, Sarwadi Syawaluddin Kadafi Parinduri Teddy Gunawan Teddy Surya Gunawan Teddy Surya Gunawan Teresa Tamba Tri Andre Anu Triandi, Budi Ubaidullah Hasibuan Wahyuni, Linda Wanayumini Wulandari, Wulandari Yuni Franciska Zakarias Situmorang Zuriati Janin