p-Index From 2020 - 2025
7.384
P-Index
This Author published in this journals
All Journal Jurnal Media Infotama Jurnal Teknologi Informasi dan Ilmu Komputer Jurnal Transformatika Jurnal Informatika dan Teknik Elektro Terapan Scientific Journal of Informatics CESS (Journal of Computer Engineering, System and Science) Riau Journal of Computer Science International Journal of Artificial Intelligence Research JIKO (Jurnal Informatika dan Komputer) INOVTEK Polbeng - Seri Informatika MATRIK : Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer JOURNAL OF SCIENCE AND SOCIAL RESEARCH MIND (Multimedia Artificial Intelligent Networking Database) Journal JSAI (Journal Scientific and Applied Informatics) JATI (Jurnal Mahasiswa Teknik Informatika) Jurnal Tekinkom (Teknik Informasi dan Komputer) Indonesian Journal of Electrical Engineering and Computer Science IJIIS: International Journal of Informatics and Information Systems Journal of Computer System and Informatics (JoSYC) JINAV: Journal of Information and Visualization Journal of Applied Data Sciences JUDIMAS (Jurnal Inovasi Pengabdian Kepada Masyarakat) Journal of Applied Computer Science and Technology (JACOST) Jurnal Teknologi Sistem Informasi dan Sistem Komputer TGD International Journal for Applied Information Management Journal Corner of Education, Linguistics, and Literature JUSTIN (Jurnal Sistem dan Teknologi Informasi) ProBisnis : Jurnal Manajemen Edu Sociata : Jurnal Pendidikan Sosiologi JOURNAL OF ICT APLICATIONS AND SYSTEM Neraca Manajemen, Akuntansi, dan Ekonomi Cendikia Pendidikan Jurnal Media Akademik (JMA) Bhinneka Multidisiplin Journal Jurnal Manajemen Kewirausahaan dan Teknologi
Claim Missing Document
Check
Articles

INDENTIFIKASI POLA AKSARA ARAB MELAYU DENGAN JARINGAN SYARAF TIRUAN CONVOLUTIONAL NEURAL NETWORK (CNN) Yanto, Budi; -, Basorudin; -, Jufri; Hayadi, B.Herawan
JSAI (Journal Scientific and Applied Informatics) Vol 3, No 3 (2020): Informatics Science and Implementation
Publisher : Fakultas Teknik Universitas Muhammadiyah Bengkulu

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36085/jsai.v3i3.1151

Abstract

Riau province has Malay Arabic script as a traditional cultural heritage of ancient characters that should be preserved; this script is adapted from Arabic writing. This script from Malay Arabic has a unique form that is different from the original Arabic writing adaptation, which is read in a combination of letters forming latin meanings as an introduction to the everyday language of Riau Malay people in the earlier kingdom. Malay Arabic writing became an introduction to the local content of traditional languages in schools. To foster a love for preserving culture, in accordance with current technology that is able to recognize scripting patterns when written in paper, a knowledge base was created by using Matlab software by applying a convolutional Neural Network (CNN) artificial neural network algorithm capable of recognizing script patterns well. The result of image input in the form of handwriting written on paper then in the scanner in the form of JPEG image format. Testing was carried out on four Arabic Malay characters namely alif, ha, la, kho and nun. The result of training for the letter alif (a) epoch is obtained 98 out of 100 iterations with a training length of 3 seconds, furthermore, in validation performance with a result of 0.25013 on epoch 92 of 98 epoch for gradient letters with a value of 0.0071991 on the next epoch 98 in the extras produces an accuracy value of 0.6548 which states the correct result accordingness because it is close to the alif script. In the process of train input the letter kho obtained epoch 80 out of 100 iterations with a training process for 3 seconds, validation performance 0.25153 on epoch 74 out of 80 epoch for check validation with a value of 0.0011682 on the next epoch 80 in the extras obtained an extra value of 0.9326 stated the value is incorrect. Because the result of the extras results in an image that does not come close to the kho letter. Therefore, a study of how the system can recognize Malay Arabic writing patterns with the Convolutional Neural Network (CNN) method because it is very good at identifying image pattern features with an accuracy value of 4.12% of the 10 sample image patterns that have been inputted. With the introduction of imagery patterns from the extraction of features scanned Malay Arabic characters can help the findings of ancient Malay Arabic script as morphological learning of the validity of abstraction of Malay Arabic script is good
The Development of ITSM Research in Indonesia: A Systematic Literature Review B.Herawan Hayadi; Husni Teja Sukmana; Eghar Shafiera; Jin-Mook Kim
International Journal of Artificial Intelligence Research Vol 5, No 2 (2021): December 2021
Publisher : STMIK Dharma Wacana

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (631.666 KB) | DOI: 10.29099/ijair.v5i2.233

Abstract

IT Service Management (ITSM) is a framework used to support businesses by increasing IT service quality. Several studies have tried to examine the development of ITSM based on their respective interests. However, the development of ITSM in Indonesia has not been widely studied, such as the types of research that are most often investigated, what domains are often researched, the areas and types of companies being studied. The things above are the main objectives of this research. The method used in capturing data, screening, and analysis is the systematic literature review method. There are many findings obtained from this research. One of them is the domination of the service operation research area (45%) among other areas. Meanwhile, applied research had been researched quite consistently over the last five years. From these results,  it can be noticed that a deeper understanding of the synchronization between business and IT is needed. This is in accordance with the objectives of ITSM implementation so that future research is expected to provide balance in other areas, such as service strategy, design, transition, operation, and continuous service improvement.
IoT Framework Current Trends and Recent Advances to Management Company in The PT.TNC Teddy Surya Gunawan; B Herawan Hayadi; Cindy Paramitha; Muhammad Sadikin
JUDIMAS Vol 1, No 2 (2020): JUDIMAS
Publisher : STMIK Pontianak

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30700/jm.v1i2.1104

Abstract

The Internet of Things (IoT) is a fast growing and user-friendly technology that connects everything together. And it can communicate effectively between the people who connect "Things." Internet of Things, also known as Internet of Objects, usually refers to remote systems between projects. Systems will be remote and self-designable. However, the world's largest information technology companies tend to release products in the form of services to avoid disclosing detailed design and implementation knowledge. Hence, the overall trend of academic institutions is to use these mainstream IoT platforms as "black boxes". IoT is something that is useful as a sensor, computer architecture, software, security, packaging, technology selection based on the amount of data, as far as data is needed, whatever power you have. Fundamental way to collect and store data Thing: SQL, noSQL, and time series databases Machine learning algorithms with outputs: regression, classification, anomaly detection. Improve service quality, reduce service costs New models (precision services), Reduce consumption costs of higher quality products or services, Improve health and safety.
Analisis Pengaruh Penggunaan Sistem Layanan Pelanggan pada PT. Amber Karya Batam B. Herawan Hayadi; Arman Basri
RJOCS (Riau Journal of Computer Science) Vol. 2 No. 1 (2016): Riau Journal Of Computer Science
Publisher : RJOCS (Riau Journal of Computer Science)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (129.561 KB) | DOI: 10.30606/rjocs.v2i1.782

Abstract

Tujuan Penelitian ini untuk mengungkapkan: (1) besarnya pengaruh antara penggunaan teknologi terhadap sistem layanan pelanggan, (2) besarnya pengaruh sistem informasi terhadap sistem layanan pelanggan, (3) besarnya pengaruh penggunaan teknologi dan system informasi terhadap sistem layanan pelanggan pada PT Amber Karya batam. Penelitian ini menggunakan metode Kuantitatif deskriptif. Populasi dalam penelitian ini sebanyak 50 orang karyawan yang ada pada PT Amber Karya Batam, dan sampel adalah semua karyawan yang ada di PT Amber Karya Batam yang berjumlah 50 orang sehingga dilakukan metode sensus. Tehnik pengumpulan data menggunakan instrumen yang berbentuk angket. Angket di uji validitas dan reabilitas. Data dianalisis dengan menggunakan regresi linear berganda. Hasil Penelitian menunjukkan bahwa: (1) terdapat pengaruh positif antara penggunaan teknologi terhadap sistem layanan pelanggan, dengan nilai thitung = 3,820 dan signifikan 0,000, (2) terdapat pengaruh positif antara sistem informasi terhadap system layanan pelanggan, dengan thitung = 3,101 dan signifikan 0,003, (3) terdapat pengaruh penggunaan teknologi dan system informasi terhadap system layanan pelanggan, dengan nilai Fhitung = 109,735 dan signifikan 0,000. Berdasarkan temuan penelitian ini disarankan agar pimpinan memperhatikan kinerja sistem agar tidak timbul ketimpangtindihan program pada perusahaan.
Sistem Informasi Personalia PT. Green Flexible Industries B. Herawan Hayadi; Bayu Kusuma; Adyanata Lubis
RJOCS (Riau Journal of Computer Science) Vol. 2 No. 2 (2016): Riau Journal of Computer Science
Publisher : RJOCS (Riau Journal of Computer Science)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (547.741 KB) | DOI: 10.30606/rjocs.v2i2.871

Abstract

Personnel Information System development in organizations or institutions institutions currently very rapidly with the number of publications and test the application of some researchers at universities around the world, Problems of Information Systems always be obstacles and barriers in the development of every organization. Identify the problem that there can be improvements in the development of Personnel Information System. The system is expected to provide facilities and improve work effectiveness and can produce a fast and accurate information. The method used to analyze the system, data processing and system design, information system can cope with delays in the process of computer-based data input.can collect data - the data from the Personnel Employee and Payroll into a single entity in the database, so it can be processed and presented into a useful information for the company
Visualisasi Konsep Umum Sistem Pakar Berbasis Multimedia B. Herawan Hayadi
RJOCS (Riau Journal of Computer Science) Vol. 3 No. 1 (2017): Riau Journal of Computer Science
Publisher : RJOCS (Riau Journal of Computer Science)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (563.318 KB) | DOI: 10.30606/rjocs.v3i1.1169

Abstract

Pengetahuan dari suatu sistem pakar mungkin dapat direpresentasikan dalam sejumlah cara. Salah satu metode yang paling umum untuk merepresentasikan pengetahuanadalah dalam bentuk tipe aturan (Rule) IF .... THEN (Jika.... Maka). Turban 1995 menyatakan bahwa konsep dasar dari suatu sistem pakar mengandung beberapa unsur atau elemen, yaitu keahlian, ahli, pengalihan keahlian, inferensi, aturan, dan kemampuan menjelaskan. Dalam penulisan ilmiah ini dibantu dengan bentuk visualisasi untuk menyampaikan konsep umum sistem pakar menggunakan macromedia flash, dengan memilihnya macromedia flash ini sebagai medianya agar para pembejaran konsep umum sistem pakar muda untuk dipahaminya dengan adanya dalam bentuk animasi.
Model Peramalan Artificial Neural Network pada Peserta KB Aktif Jalur Pemerintahan menggunakan Artificial Neural Network Back-Propagation B. Herawan Hayadi; I Gede Iwan Sudipa; Agus Perdana Windarto
MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer Vol 21 No 1 (2021)
Publisher : LPPM Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (436.951 KB) | DOI: 10.30812/matrik.v21i1.1273

Abstract

Pertumbuhan penduduk di Indonesia yang terus meningkat setiap tahunnya dan tidak disertai dengan ketersediaan lapangan pekerjaan yang mampu menampung seluruh angkatan kerja bisa menimbulkan pengangguran, kriminalitas, yang bersinggungan pula dengan rusaknya moralitas masyarakat. Oleh karena pemerintah memberikan serangkaian usaha untuk menekan laju pertumbuhan penduduk agar tidak terjadi ledakan penduduk yang lebih besar. Salah satu cara yang dilakukan adalah dengan menggalakkan program KB (Keluarga Berencana). Tujuan dari penelitian untuk membuat model prediksi dengan memanfaatkan Artificial Neural Network (ANN) pada peserta KB aktif jalur pemerintahan untuk melihat laju pertumbuhan penduduk kedepannya dalam rentang waktu tertentu guna mempermudah pemerintah dalam membuat rancangan perencanaan ke depannya. Back-propagation merupakan salah satu metode yang digunakan untuk melakukan peramalan yang merupakan bagian dari ANN. Hal ini perlu dilakukan mengingat jumlah kepadatan penduduk terus meningkat setiap tahunnya dan KB merupakan salah satu program pemerintah yang bertujuan mengendalikan laju kenaikan penduduk di Indonesia. Dataset yang digunakan yakni peserta KB aktif di Kota Pematangsiantar bulan agustus 2019 – januari 2020. Pengujian dilakuan dengan bantuan software matlab dengan menguji 5 model arsitektur (try error) yakni model 4-5-1; model 4-7-1; model 4-8-5-1; dan model 4-9-7-1. Hasil analisis diperoleh bahwa model arsitektur 4-8-5-1 merupakan yang terbaik dan dijadikan acuan untuk meramalkan peserta KB aktif pada jalur pemerintah dengan tingkat akurasi sebesar 71% (terbaik dari 4 model arsitektur lainnya). Model ANN tersebut dapat diimpementasikan untuk melakukan prediksi terhadap peserta KB aktif jalur pemerintahan sehingga pemerintah dapat melakukan rancangan untuk kedepannya.
Klasifikasi Tekstur Kematangan Buah Jeruk Manis Berdasarkan Tingkat Kecerahan Warna dengan Metode Deep Learning Convolutional Neural Network Budi Yanto; Luth Fimawahib; Asep Supriyanto; B.Herawan Hayadi; Rinanda Rizki Pratama
Jurnal Inovtek Polbeng Seri Informatika Vol 6, No 2 (2021)
Publisher : P3M Politeknik Negeri Bengkalis

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35314/isi.v6i2.2104

Abstract

Sweet orange is very much consumed by humans because oranges are rich in vitamin C, sweet oranges can be consumed directly to drink. The classification carried out to determine proper (good) and unfit (rotten) oranges still uses manual methods, This classification has several weaknesses, namely the existence of human visual limitations, is influenced by the psychological condition of the observations and takes a long time. One of the classification methods for sweet orange fruit with a computerized system the Convolutional Neural Network (CNN) is algorithm deep learning to the development of the Multilayer Perceptron (MLP) with 100 datasets of sweet orange images, the classification accuracy rate was 97.5184%. the classification was carried out, the result was 67.8221%. Testing of 10 citrus fruit images divided into 5 good citrus images and 5 rotten citrus images at 96% for training 92% for testing which were considered to have been able to classify the appropriateness of sweet orange fruit very well. The graph of the results of the accuracy testing is 0.92 or 92%. This result is quite good, for the RGB histogram display the orange image is good
KLARIFIKASI KEMATANGAN BUAH NANAS DENGAN RUANG WARNA HUE SATURATION INTENSITY (HSI) Budi Yanto; jufri jufri; Adyanata Lubis; B.Herawan Hayadi; Erna Armita, NST
Jurnal Inovtek Polbeng Seri Informatika Vol 6, No 1 (2021)
Publisher : P3M Politeknik Negeri Bengkalis

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35314/isi.v6i1.1882

Abstract

Pineapple fruit is included in the type of tropical fruit, which is quite popular because it contains a lot of Vitamin C, which is quite high. Pineapple is a local fruit in the Kampar area, this fruit can be consumed directly and become other local processed products. Therefore, the quality of pineapple ripeness must be maintained. The problem that occurs at this time is that the pineapple fruit selection process is still done manually, by looking at it visually, so mistakes can occur in the process of clarifying pineapple fruit identification according to standards. Therefore, it is necessary to research the ripeness of pineapples using the Color Space Algorithm Hue Saturation Intensity (HIS). The variables to be input are based on photos of ripe, half ripe, and raw pineapples using a smartphone camera or DSLR camera with a minimum resolution of 8 MP. Clarifying the results with image processing and Hue Saturation Intensity (HIS) transformation has an accuracy rate of 80% for the 20 image test data. So that the expected results can help pineapple farmers in detecting the level of maturity of pineapple fruit, which is difficult, can minimize errors in determining the ripeness of pineapple fruit
Komparasi Metode Multi Layer Perceptron (MLP) dan Support Vector Machine (SVM) untuk Klasifikasi Kanker Payudara JAKA KUSUMA; B. HERAWAN HAYADI; WANAYUMINI WANAYUMINI; RIKA ROSNELLY
MIND (Multimedia Artificial Intelligent Networking Database) Journal Vol 7, No 1 (2022): MIND Journal
Publisher : Institut Teknologi Nasional, Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26760/mindjournal.v7i1.51-60

Abstract

ABSTRAKPenyebab kematian utama saat ini di dunia salah satunya dikarenakan oleh penyakit kanker. Menurut data Globocan 2018, dengan tingkat kematian rerata 17 per 100.000 jiwa dan insiden sebanyak 2,1 per 100.000 jiwa untuk kanker payudara yang menyerang wanita di Indonesia. Hal ini menjadikan Indonesia menempati peringkat ke-23 di Asia dan ke-8 di Asia Tenggara. Seiring perkembangan teknologi, sistem berbantuan komputer telah membantu orang di berbagai bidang misalnya di bidang medis. Penentuan jenis kanker payudara menggunakan mechine learning dapat membantu ahli patologi melakukan pemeriksaan secara lebih konsisten dan efisien. Pada penelitian ini, akan dilakukan komparasi metode Multi Layer Perceptron (MLP) dan Support Vector Machine (SVM) untuk klasifikasi kanker payudara. Adapun hasil yang didapatkan menunjukan bahwa, dalam klasifikasi metode Multi Layer Perceptron (MLP) dengan fungsi aktivasi Logistic dan fungsi optimisasi Adam memberikan nilai accuracy, precision dan recall terbaik dibandingkan Support Vector Machine yaitu sebesar 97.7%.Kata kunci: Multi Layer Perceptron (MLP), Aktivasi Logistic, Optimisasi Adam, Support Vector Machine (SVM), Kanker PayudaraABSTRACTThe leading cause of death today in the world is due to cancer. According to Globocan 2018 data, with an average mortality rate of 17 per 100,000 people and an incidence of 2.1 per 100,000 people for breast cancer that affects women in Indonesia. This makes Indonesia ranked 23rd in Asia and 8th in Southeast Asia. As technology has evolved, computer-aided systems have helped people in various fields such as in the medical field. Determination of the type of breast cancer using mechine learning can help pathologists perform examinations more consistently and efficiently. In this study, a comparison of the Multi Layer Perceptron (MLP) and Support Vector Machine (SVM) methods will be carried out for breast cancer classification. The results obtained showed that, in the classification of multi layer perceptron (MLP) methods with logistic activation function and Adam optimization function provides the best accuracy, precision and recall value compared to Support Vector Machine which is 97.7%.Keywords: Multi Layer Perceptron (MLP), Logistic Activation, Adam Optimization, Support Vector Machine (SVM), Breast Cancer
Co-Authors -, Basorudin Abdi Rahim Damanik Adyanata Lubis Adyanata Lubis Adyanata Lubis, Adyanata agung setiawan Agus Perdana Windarto Agustina Akhmad Zulkifli Alvin, Muhammad Ambarsari, Yuke Aramiko Kayanie Nenden Atryana Arifin, Rita Wahyu Arman Basri Asep Supriyanto Asyahri Hadi Nasyuha Bachtiar, Marsellinus Bayu Kusuma Budi Yanto Budi Yanto Budi Yanto, Budi Budiarto, Mukti Cindy Paramitha Dahliyusmanto, Dahliyusmanto David Setaiwan Dede Nurhasanah Devi Delawati Didik Setiyadi Dwi ASTUTI Dwiastuti, Dwiastuti Edi Roseno Eghar Shafiera Eko Priyanto Engkos Kosasih Enny Widawati Erna Armita, NST Erni Rouza, Erni fatimah Fatimah Franciska, Yuni Furtasan Ali Yusuf Handayani, Meli Hartono Hartono Hayatul Masquroh Henderi . Hendrawati, Tuti Heni Pujiastuti Herlina Latipa Sari Hermawansyah, Hermawansyah Husni Teja Sukmana I Gede Iwan Sudipa Ichsan Firmansyah Ihlas Ahmad Subarkah Ilham Arifin Irawati Irawati irfan, mursyid ISKANDAR JAKA KUSUMA Jaka Kusuma Jaka Tirta Samudra Jaka Tirta Samudra Jin-Mook Kim Jufri -, Jufri Jufri Jufri Juhriah Juhriah, Juhriah Junaesih, R. Karina Andriani Kasman Rukun Kelvin Leonardi Kohsasih Khodijah Hulliyah Kim, Jin-Mook Luth Fimawahib Luth Fimawahib M Haidar Husein Mahdi, Ahmad Masquroh, Hayatul Muadifah, Muadifah muflihah muflihah Muhammad Sadikin Mulyadi, Dadi Musadad Musadad Novendra Adisaputra Sinaga Ovi Sakti Cahyaningtyas P. Eko Prasetyo P.P.P.A.N.W Fikrul Ilmi R.H. Zer Padeli Padeli Pardede, Doughlas Prasiwiningrum, Elyandri Pratama, Gelard Untirtha Puji Sari Ramadhan Rahmulyana, Anjar Raman Raman Raman, Raman Riandini, Meisarah RIKA ROSNELLY Rika Rosnelly Rinanda Rizki Pratama Rinanda Rizki Pratama Rindi Genesa Hatika Rizky Ema Wulansari Rohim, Rouf Rubianto Rudi Gunawan Saepudin Saepudin Safril Safril Sartika Mandasari Sepriyanti, Sepriyanti Siregar, Pariang Sonang Sofiana, Sofa sono, Aji Sudar Suheti, Suheti Suirat, Suirat Sumiyati SUMIYATI SUMIYATI Suwarni Suwarni Swastika, Rulin Tambunan, Fazli Nugraha Teddy Surya Gunawan Toyibah, Toyibah Tutut Herawan Uniba, Muadifah Utomo, Ahmar Dwi Wahdi, Adi Wanayumini Wiwik Handayani Wiwik Novianawati Yuke Ambarsari Yuni Franciska Tarigan Yuningsih, Yuyun Yustiva, Fitriyatul Zakarias Situmorang