Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : TELKOMNIKA (Telecommunication Computing Electronics and Control)

Classification of neovascularization using convolutional neural network model Wahyudi Setiawan; Moh. Imam Utoyo; Riries Rulaningtyas
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 17, No 1: February 2019
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v17i1.11604

Abstract

Neovascularization is a new vessel in the retina beside the artery-venous. Neovascularization can appear on the optic disk and the entire surface of the retina. The retina categorized in Proliferative Diabetic Retinopathy (PDR) if it has neovascularization. PDR is a severe Diabetic Retinopathy (DR). An image classification system between normal and neovascularization is here presented. The classification using Convolutional Neural Network (CNN) model and classification method such as Support Vector Machine, k-Nearest Neighbor, Naïve Bayes classifier, Discriminant Analysis, and Decision Tree. By far, there are no data patches of neovascularization for the process of classification. Data consist of normal, New Vessel on the Disc (NVD) and New Vessel Elsewhere (NVE). Images are taken from 2 databases, MESSIDOR and Retina Image Bank. The patches are made from a manual crop on the image that has been marked by experts as neovascularization. The dataset consists of 100 data patches. The test results using three scenarios obtained a classification accuracy of 90%-100% with linear loss cross validation 0%-26.67%. The test performs using a single Graphical Processing Unit (GPU).
An improvement of Gram-negative bacteria identification using convolutional neural network with fine tuning Budi Dwi Satoto; Imam Utoyo; Riries Rulaningtyas; Eko Budi Khoendori
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 18, No 3: June 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v18i3.14890

Abstract

This paper proposes an image processing approach to identify Gram-negative bacteria. Gram-negative bacteria are one of the bacteria that cause lung lobe damage-bacterial samples obtained through smears of the patient's sputum. The first step bacterium should pass the pathogen test process. After that, it bred using Mc Conkey's media. The problem faced is that the process of identifying bacterial objects is still done manually under a fluorescence microscope. The contributions offered from this research are focused on observing bacterial morphology for the operation of selecting shape features. The proposed method is a convolutional neural network with fine-tuning. In the stages of the process, a convolutional neural network of the VGG-16 architecture used dropout, data augmentation, and fine-tuning stages. The main goal of the current research was to determine the method selection is to get a high degree of accuracy. This research uses a total sample of 2520 images from 2 different classes. The amount of data used at each stage of training, testing, and validation is 840 images with dimensions of 256x256 pixels, a resolution of 96 points per inch, and a depth of 24 bits. The accuracy of the results obtained at the training stage is 99.20%.
Transfer learning with multiple pre-trained network for fundus classification Wahyudi Setiawan; Moh. Imam Utoyo; Riries Rulaningtyas
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 18, No 3: June 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v18i3.14868

Abstract

Transfer learning (TL) is a technique of reuse and modify a pre-trained network. It reuses feature extraction layer at a pre-trained network. A target domain in TL obtains the features knowledge from the source domain. TL modified classification layer at a pre-trained network. The target domain can do new tasks according to a purpose. In this article, the target domain is fundus image classification includes normal and neovascularization. Data consist of 100 patches. The comparison of training and validation data was 70:30. The selection of training and validation data is done randomly. Steps of TL i.e load pre-trained networks, replace final layers, train the network, and assess network accuracy. First, the pre-trained network is a layer configuration of the convolutional neural network architecture. Pre-trained network used are AlexNet, VGG16, VGG19, ResNet50, ResNet101, GoogLeNet, Inception-V3, InceptionResNetV2, and squeezenet. Second, replace the final layer is to replace the last three layers. They are fully connected layer, softmax, and output layer. The layer is replaced with a fully connected layer that classifies according to number of classes. Furthermore, it's followed by a softmax and output layer that matches with the target domain. Third, we trained the network. Networks were trained to produce optimal accuracy. In this section, we use gradient descent algorithm optimization. Fourth, assess network accuracy. The experiment results show a testing accuracy between 80% and 100%.