Claim Missing Document
Check
Articles

Found 32 Documents
Search

Desain dan Implementasi Visual Object Tracking Menggunakan Pan and Tilt Vision System Yunardi, Riky Tri; Mardhiyah, Ajeng W.; Yahya, M. Hafi; Arisgraha, Franky Chandra Satria
ELKHA : Jurnal Teknik Elektro Vol.11 No.2, October 2019
Publisher : Faculty of Engineering, Universitas Tanjungpura

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2856.244 KB) | DOI: 10.26418/elkha.v11i2.34351

Abstract

Object tracking is a technique for detecting and following the moving object. It can be used to helping security officers to monitor the room that has a large monitoring working area. The aim of research is to design the visual system of object tracking by using pan and tilt vision system. The orientation of camera can move in vertically and horizontally path. Visualization program for this project is consist of motion detection, edge detection and center of mass. The detected object position can be used for controlling the pan and tilt at mechanical system which is mounted on the camera to track the moving object. The results of research show the design of object tracking can detecting and following walking human with an ideal distance of 6 meters and directional angular shift is 5 degrees on the visual resolution of 360 × 240 pixels
INVERSE KINEMATICS AND PID CONTROLLER IMPLEMENTATION OF HEXAPOD ROBOT FOR WALL FOLLOWER NAVIGATION Yunardi, Riky Tri; Muchadin, Arief; Priyanti, Kurnia Latifa; Arifianto, Deny
INAJEEE (Indonesian Journal of Electrical and Electronics Engineering) Vol 2, No 2 (2019)
Publisher : Jurusan Teknik Elektro Fakultas Teknik UNESA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/inajeee.v2n2.p23-28

Abstract

Wall following is one of the methods used in navigating the movement of robot applications. Because the robot moves along the wall, the ultrasonic sensor is used as a barrier detector capable of measuring the distance between the robot and the wall. The six-legged robot is a hexapod robot has six pieces of legs and each leg has three joints that are used to move. The leg movement is based on the inverse kinematics to obtain the angle value of each joint. Nevertheless, a six-legged robot requires stability in order to move smoothly while following the wall. In this work, a robot was developed using a proportional derivative controller to implemented on wall follower navigation. The PID controller is determined using analytic tuning to produce the controller parameters that are used to make the robot move straighten and keep the position against the wall. Overall, the application of inverse kinematics and PID control on the wall following robot navigation can improve the stability of the robot with a set point value of 8-16 cm on the wall length of 1.5 within 92–96 % of average success rate.
Holonomic Implementation of Three Wheels Omnidirectional Mobile Robot using DC Motors Yunardi, Riky Tri; Arifianto, Deny; Bachtiar, Farhan; Intan Prananingrum, Jihan
Journal of Robotics and Control (JRC) Vol 2, No 2 (2021): March (Forthcoming Issue)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

In the Indonesian Wheeled Football Robot Contest (KRSBI) wheeled division, the robot that is made must be able to complete a predetermined task, one of which is the robot for chasing the ball and catching it. Holonomic is one of the methods used in navigating the omnidirectional movement of mobile robot applications. Because the movement is designed without changing the position of the robot in the direction of the facing, the omnidirectional wheels are used which has the ability to move freely in two directions. The mobile robot has three omnidirectional wheels and DC motors each used for movement. DC motors controlled by EMS 30A H-Bridge as a driver and Arduino Mega 2560 as the main microcontroller. Holonomic and inverse kinematic calculations are conducted to control the mobile robot movement of x, y, and ω toward angular velocity and direction of s1, s2, and s3 for each wheel. The length of the wheel axis to the middle of the body of robot is 160 mm. In this study, a robot was implemented on the robot movement for moving forward, backward, sideways, and diagonal direction. Based on the data evaluation, it is determined that an angular error of 2.84% exists in the movement of the omnidirectional robot at a velocity of 0.256 m/s to 1.403 m/s.
INVERSE KINEMATICS AND PID CONTROLLER IMPLEMENTATION OF HEXAPOD ROBOT FOR WALL FOLLOWER NAVIGATION Yunardi, Riky Tri; Muchadin, Arief; Priyanti, Kurnia Latifa; Arifianto, Deny
INAJEEE (Indonesian Journal of Electrical and Electronics Engineering) Vol 2, No 2 (2019)
Publisher : Jurusan Teknik Elektro Fakultas Teknik UNESA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/inajeee.v2n2.p23-28

Abstract

Wall following is one of the methods used in navigating the movement of robot applications. Because the robot moves along the wall, the ultrasonic sensor is used as a barrier detector capable of measuring the distance between the robot and the wall. The six-legged robot is a hexapod robot has six pieces of legs and each leg has three joints that are used to move. The leg movement is based on the inverse kinematics to obtain the angle value of each joint. Nevertheless, a six-legged robot requires stability in order to move smoothly while following the wall. In this work, a robot was developed using a proportional derivative controller to implemented on wall follower navigation. The PID controller is determined using analytic tuning to produce the controller parameters that are used to make the robot move straighten and keep the position against the wall. Overall, the application of inverse kinematics and PID control on the wall following robot navigation can improve the stability of the robot with a set point value of 8-16 cm on the wall length of 1.5 within 92–96 % of average success rate.
EDUKASI PEMBUATAN BILIK DISINFEKTAN SEDERHANA MELALUI VIDEO BAGI MASYARAKAT DI TENGAH PANDEMIK COVID-19 Yunardi, Riky Tri; A'yun, Qurrotul
PEDULI: Jurnal Ilmiah Pengabdian Pada Masyarakat Vol 5 No 1 (2021)
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37303/peduli.v5i1.237

Abstract

The purpose of this community activity is to provide education to make simple disinfectant chamber for people who have a lot of potential, especially in preventing the spread of the covid-19 virus. This design consists of a chamber made of an aluminum frame covered with transparent PVC plastic. In order to be entered by an adult human, the size of the design has a height and length of 200 cm and a width of 100 cm. As a disinfectant liquid sprayer, it is equipped with a 2-3 micron nozzle spray and a water pump motor integrated with electronic devices and control systems. The liquid tank is designed to accommodate a mixture of water and disinfectant substances and it is connected to the water pump using a PVC pipe. In the implementation of this community service activity, a video was made about the education of the use and how to make a disinfectant chamber. The results of the prototype and video can be used to facilitate people who want to make disinfectant chambers independently.
Perancangan Sistem Kendali pada Lengan Assistive Social Robot menggunakan Kamera Yunardi, Riky Tri; Mardiyanto, Ronny
JURNAL NASIONAL TEKNIK ELEKTRO Vol 6, No 2: Juli 2017
Publisher : Jurusan Teknik Elektro Universitas Andalas

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/jnte.v6n2.402.2017

Abstract

Robotics technology has widely applied and developed in the rehabilitation field. Assistive Social Robot is a technology that can interact with users and improve progress in rehabilitation. Accessibility when taking an object using a robotic arm system is needed. A camera is the optical sensor that has been applied to detect the position of the object. In this paper explain a design of control system of robotic arm by using a camera. Information of the distance and position are used to organizing the control of the robotic arm movement, that form of a gripper. Tests conducted include: testing to detect the contour of the object, testing the measurement of object distance, and testing the robot arm control. From the results shows the speed of performance of control system that has been designed in performing the task to pick up an object from the initial position to the end takes 28.05 seconds.Keywords : Assistive social robot, robotic arm , cameraAbstrak—Teknologi robotika telah banyak diaplikasi dan dikembangkan dalam bidang rehabilitasi. Assistive Social Robot merupakan suatu teknologi robotika yang dapat berinteraksi dengan pengguna dan memberi bantuan dalam pemulihan proses rehabilitasi. Aksesibilitas ketika mengambil sebuah benda dengan menggunakan sistem lengan robot sangat dibutuhkah. Kamera merupakan sensor optik yang paling banyak diaplikasikan untuk mendeteksi posisi objek. Artikel ini membahas mengenai sistem kendali lengan robot menggunakan kamera. Informasi jarak dan posisi objek digunakan untuk mengendalikan gerakan lengan robot robot yang berbentuk gripper. Pengujian yang dilakukan meliputi: pengujian mendeteksi kontur objek, pengujian pengukuran jarak objek, serta pengujian kendali lengan robot. Dari hasil menunjukkan kecepatan kinerja sistem kendali yang telah dirancang dalam melakukan tugas untuk mengambil sebuah objek dari posisi awal sampai akhir memerlukan waktu 28,05 detik.Kata Kunci : Assistive social robot, lengan robot, kamera
An improved control for MPPT based on FL-PSo to minimize oscillation in photovoltaic system Aji Akbar Firdaus; Riky Tri Yunardi; Eva Inaiyah Agustin; Sisca D. N. Nahdliyah; Teguh Aryo Nugroho
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 11, No 2: June 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (639.01 KB) | DOI: 10.11591/ijpeds.v11.i2.pp1082-1087

Abstract

Photovoltaic (PV) is a source of electrical energy derived from solar energy and has a poor level of efficiency. This efficiency is influenced by PV condition, weather, and equipments like Maximum Power Point Tracking (MPPT). MPPT control is widely used to improve PV efficiency because MPPT can produce optimal power in various weather conditions. In this paper, MPPT control is performed using the Fuzzy Logic-Particle Swarm Optimization (FL-PSO) method. This FL-PSO is used to get the Maximum Power Point (MPP) and minimize the output power oscillation from PV. From the simulation results using FL-PSO, the values of voltage, and output power from the boost converter are 183.6 V, and 637.7 W, respectively. The ripple of output power from PV with FL-PSO is 69.5 W. Then, the time required by FL-PSO reaches MPP is 0.354 s. Compared with MPPT control based on the PSO method, the MPPT technique using FL-PSO indicates better performance and faster than the PSO.
Application of EMG and Force Signals of Elbow Joint on Robot-assisted Arm Training Riky Tri Yunardi; Eva Inaiyah Agustin; Risalatul Latifah; Winarno Winarno
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 16, No 6: December 2018
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v16i6.11707

Abstract

Flexion-extension based on the system's robotic arm has the potential to increase the patient's elbow joint movement. The force sensor and electromyography signals can support the biomechanical system to detect electrical signals generated by the muscles of the biological. The purpose of this study is to implement the design of force sensor and EMG signals application on the elbow flexion motion of the upper arm. In this experiments, the movements of flexion at an angle of 45º, 90º and 135º is applied to identify the relationship between the amplitude of the EMG and force signals on every angle. The contribution of this research is for supporting the development of the Robot-Assisted Arm Training. The correlation between the force signal and the EMG signal from the subject studied in the elbow joint motion tests. The application of sensors tested by an experimental on healthy subjects to simulating arm movement. The experimental results show the relationship between the amplitude of the EMG and force signals on flexion angle of the joint mechanism for monitoring the angular displacement of the robotic arm. Further developments in the design of force sensor and EMG signals are potentially for open the way for the next researches based on the physiological condition of each patient.
Short-term photovoltaics power forecasting using Jordan recurrent neural network in Surabaya Aji Akbar Firdaus; Riky Tri Yunardi; Eva Inaiyah Agustin; Tesa Eranti Putri; Dimas Okky Anggriawan
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 18, No 2: April 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v18i2.14816

Abstract

Photovoltaic (PV) is a renewable electric energy generator that utilizes solar energy. PV is very suitable to be developed in Surabaya, Indonesia. Because Indonesia is located around the equator which has 2 seasons, namely the rainy season and the dry season. The dry season in Indonesia occurs in April to September. The power generated by PV is highly dependent on temperature and solar radiation. Therefore, accurate forecasting of short-term PV power is important for system reliability and large-scale PV development to overcome the power generated by intermittent PV. This paper proposes the Jordan recurrent neural network (JRNN) to predict short-term PV power based on temperature and solar radiation. JRNN is the development of artificial neural networks (ANN) that have feedback at each output of each layer. The samples of temperature and solar radiation were obtained from April until September in Surabaya. From the results of the training simulation, the mean square error (MSE) and mean absolute percentage error (MAPE) values were obtained at 1.3311 and 34.8820, respectively. The results of testing simulation, MSE and MAPE values were obtained at 0.9858 and 1.3311, with a time of 4.591204. The forecasting has minimized significant errors and short processing times.
Voice recognition system for controlling electrical appliances in smart hospital room Eva Inaiyah Agustin; Riky Tri Yunardi; Aji Akbar Firdaus
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 17, No 2: April 2019
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v17i2.11781

Abstract

Nowadays, most hospitals have new problem that is lack of medical nurse due to the number of patient increas rapidly. The patient especially with physical disabilities are difficult to control the switch on electrical appliances in patient’s room. This research aims to develope voice recognition based home automation and being applied to patient room. A miniature of patient’s room are made to simulate this system. The patient's voice is received by the microphone and placed close to the patient to reduce the noise.V3 Voice recognition module is used to voice recognition process. Electrical bed of patient is represented by mini bed with utilising motor servo. The lighting of patient room is represented by small lamp with relay. And the help button to call the medical nurse is represented by buzzer. Arduino Uno is used to handle the controlling process. Six basic words with one syllable are used to command for this system. This system can be used after the patient's voice is recorded. This system can recognize voice commands with an accuracy 75%. The accuracy can be improved up to 85% by changing the voice command into two syllables with variations of vowels and identical intonation. Higher accuracy up to 95% can be reached by record all the subject’s voice.