Social Networking Sites (SNS) have emerged as popular communication tools for sharing knowledge and connections. LinkedIn, which is the most widely used professional network in today’s technological era, is primarily utilized by professionals and the business world. LinkedIn serves as a platform for interacting with other professionals, building a professional profile, establishing connections and relationships, as well as developing work networks and business opportunities. In this research, a sentiment analysis of the usefulness of the LinkedIn application was conducted, involving 3000 reviews from the Google Play Store, using the Support Vector Machine (SVM) algortihm. The research process includes data collection (crawling), data cleaning, translation, labeling, text tokenization, and the elimination of common words (stop words). After optimizing parameters using the grid search method (grid param), a classification accuracy of 82% was achieved with parameter settings of C = 1; gamma = 0.1; and kernel = ‘linear’. This result indicates that the SVM algorithm can be used quite accurately for sentiment classification in Google Play Store reviews. Kata kunci: LinkedIn; Support Vector Machine; Google Play Store  AbstrakSocial Networking Sites (SNS) muncul sebagai alat komunikasi yang cukup populer untuk berbagi pengetahuan dan koneksi. LinkedIn, yang merupakan jaringan profesional yang paling banyak di gunakan die era perkembangan teknologi saat ini, terutama oleh para professional dan dunia kerja. LinkedIn berfungsi sebagai platform untuk berinteraksi dengan profesional lainnya, membangun profil profesional, membangun koneksi dan relasi, serta mengembangkan jaringan kerja dan peluang bisnis. Dalam penelitian ini, dilakukan analisis sentimen terhadap kegunaan aplikasi LinkedIn dengan melibatkan 3000 ulasan di Google Play Store, menggunakan algoritma Support Vector Machine (SVM). Proses penelitian ini meliputi pengambilan data (crawling), pembersihan data (cleaning), penerjemahan (translation), pemberian label (labelling), pemenggalan teks menjadi token (tokenization), dan eliminasi kata-kata umum (stop words). Setelah dilakukan optimisasi parameter dengan metode grid search (grid param), diperoleh akurasi klasifikasi sebesar 82% dengan pengaturan parameter C = 1; gamma = 0,1; dan kernel = ‘linear’. Hasil ini menunjikkan bahwa algoritma SVM dapat digunakan dengan cukup akurat untuk melakukan klasifikasi sentimen pada ulasan di Google Play Store.Kata kunci: LinkedIn; Support Vector Machine; Google Play Store