Claim Missing Document
Check
Articles

Found 201 Documents
Search
Journal : eProceedings of Engineering

Video Steganografi Menggunakan Metode Enhanced Least Significant Bit Pada Frame Yang Dipilih Berdasarkan Deteksi Energi Pita Frekuensi Dengan Discrete Wavelet Packet Transform Bella Yunita Kusuma; Bambang Hidayat; I Nyoman Apraz Ramatryana
eProceedings of Engineering Vol 3, No 2 (2016): Agustus, 2016
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Perkembangan di dunia teknologi dan informasi saat ini sudah memasuki era digital. Dimana pertukaran informasi saat ini dilakukan melalui internet.Namun pertukaran informasi yang dilakukan melalui internet menimbulkan kekhawatiran jatuhnya informasi kepada pihak yang tidak berkepentingan karena sifat internet yang dapat diakses oleh siapapun ,kapanpun dan dimanapun. Oleh karena itu perlunya sistem untuk menjaga keamanan suatu data yaitu dengan steganografi. Steganografi adalah teknik menyembunyikan informasi ke dalam file multimedia.Dalam tugas akhir ini akan dibuat steganografi yang dapat menyembunyikan pesan teks ke dalam video.Proses penyisipan pesan akan dilakukan dengan menggunakan metode Enhanced Least Significant Bit.Untuk lebih menjaga keamanannya pemilihan tempat penyisipan frame pada video akan ditentukan berdasarkan deteksi Energy Band Frequency pada audio,dengan mengggunakan metode Discrete Wavelet Packet Transform.Kemudian steganografi yang dibuat dilakukan pengujian berdasarkan MSE,PSNR dan MOS.Hasil yang didapatkan cukup baik dimana mendapatkan nilai PSNR sebesar 71.0221 dan nilai MSE terkecil yaitu 0.0051 serta hasil rata-rata MOS yaitu 3.99778 Kata Kunci : Steganografi,Discrete Wavelet Packet Transform, Enhanced Least Significant Bit, Video
Peningkatan Kualitas Citra Radiograf Periapikal Pada Deteksi Penyakit Pulpitis Irreversibel Menggunakan Metode Adaptive Morphological Filter Nur Inastia Alfianingrum; Bambang Hidayat; Suhardjo Suhardjo
eProceedings of Engineering Vol 3, No 1 (2016): April, 2016
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Gigi merupakan bagian keras yang terdapat di dalam mulut dan mempunyai fungsi pengunyahan, bicara, dan estetika. Gigi harus dijaga kesehatanya agar tidak menyebabkan penyakit. Penyakit yang dapat terjadi pada gigi yaitu pulpitis. Pulpitis merupakan peradangan pada jaringan pulpa yang menimbulkan rasa nyeri. Gigi yang diperkirakan mengalami pulpitis difoto menggunakan alat radiograf periapikal dan hasil foto berupa citra medis (x-ray). Citra x-ray belum dapat diidentifikasi oleh para dokter secara langsung. Melainkan dengan mempertimbangkan gejala  klinis  yang  dialami  pasien  dan  ditunjang  dengan  melihat  citra  x-ray.  Citra  yang dihasilkan oleh peralatan radiografi periapikal pada umumnya mempunyai kualitas yang rendah karena terdapat banyak noise, rendahnya kualitas kontras dan ketajaman citra. Kualitas citra yang rendah tersebut dapat menyebabkan kesalahan diagnosa, sehingga dibutuhkan metode tertentu untuk memperbaiki citra tersebut atau yang biasa disebut dengan image enhancement. Perbaikan citra dibutuhkan untuk menghasilkan citra medis yang lebih baik dari citra asli untuk membantu dokter dalam mendiagnosa suatu penyakit. Metode yang digunakan untuk perbaikan citra pada tugas akhir ini yaitu adaptive morphological filter. Pada tugas akhir ini menjawab permasalahan mengenai rendahnya kualitas citra yang dihasilkan peralatan radiograf periapikal untuk pulpitis. Dengan menggunakan adaptive morphological filter, mampu menghasilkan kualitas citra yang lebih baik untuk membantu mendeteksi pulpitis, sehingga dapat dipertimbangkan untuk diimplementasikan pada kondisi nyata. Pengujian sistem pada tugas akhir ini menggunakan citra radiograf periapikal gigi 47 meunjukkan bahwa masking ke-2 memberikan hasil yang paling baik berdasarkan nilai variansi, energi dan entropi citra tersebut. Kata Kunci : periapical radiograph, pulpitis, morphological filter, image enhancement
Analisis Dan Implementasi Sistem Pengenalan Wajah Dengan Menggunakan Metode Lnmf Dan Lpp Pada Ruang Terbuka Khairunnisa Alfiyanti Suharja; Bambang Hidayat; Suci Aulia
eProceedings of Engineering Vol 2, No 1 (2015): April, 2015
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Metode pengolahan video saat ini semakin banyak dikembangkan oleh para engineer. Salah satunya untuk aplikasi sistem monitoring kejahatan. Seperti yang kita ketahui kejahatan semakin marak terjadi di berbagai tempat. Oleh karena itu dibuat sistem yang dapat mendeteksi dan mengenali wajah dengan memanfaatkan pengolahan sinyal digital yang mendukung untuk pemantauan suatu tempat .Pada tugas akhir ini dibuat suatu aplikasi yang dapat mendeteksi dan mengenali wajah seseorang dari masukan sebuah Preserving Projections (LPP). Metode LNMF menggunakan non – negative constrains yaiu memfaktorisasi suatu matriks menjadi dua buah matriks lainnya yang tidak mengandung nilai negative. Sedangkan LPP merupakan metode pemetaan proyeksi linear yang mampu menyelesaikan permasalahan yang bervariasi dengan optimal memelihara struktur ketetanggaan dari kumpulan data. Kemudian untuk pengenalan citra ini juga menggunakan pendekatan linear dari suatu database yang telah diajukan sehingga dapat mencocokan wajah yang diinputkan dengan database yang tersedia. Dengan menggunakan kedua metode tersebut maka didapat hasil suatu gambar wajah yang sudah dikenali sesuai dengan input yang diberikan dengan akurasi 70 %. Kata kunci : Face detection, Face Recognition, Local Nonnegative Matrix Factorization, Locality Preserving Projections
Pengolahan Citra Deteksi Granuloma Melalui Periapical Radiograf Dengan Metode Transformasi Dct Dan Linier Discriminant Analysis Berbasis Android Qintan Nurma Buana; Bambang Hidayat; Suhardjo Suhardjo
eProceedings of Engineering Vol 4, No 1 (2017): April, 2017
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Granuloma merupakan sebuah penyakit yang terjadi pada jaringan gigi. Granuloma dapat dideteksi dari radiograf periapikal yang diambil dari gigi pasien. Radiograf periapikal merupakan gambar x-ray yang menampilkan seluruh gigi, termasuk mahkota gigi, akar, dan tulang. Gambar x-ray gigi pasien akan diolah dan dokter akan mendiagnosis penyakit pada gigi tersebut.Pada penelitian ini digunakan metode Transformasi DCT sebagai metode ekstrasi ciri tekstur dan warna. Discrete Cosine Transform (DCT) yang merupakan transformasi Fourier yang mengubah citra dari domain spasial ke domain frekuensi. Metode Linier Discriminant Analysis bertujuan untuk maksimalisasi variasi antar masing-masing class (across users) dan meminimalisasi variasi dalam class (within user). Untuk Klasifikasi kualitas menggunakan metode K-Nearest Neighbor (KNN).Hasil dari tugas akhir ini adalah mampu untuk mengidentikfikasi penyakit granuloma dengan akurasi maksimal 85% pada android dengan waktu komputasi rata-rata 0.014626 detik dan menggunakan sampel periapikal radiograf granuloma sebagai 16 citra latih dan 20 citra uji. Kata kunci: Granuloma, Multi-Wavelet Transformation, k-Nearest Neighbour.
Deteksi Citra Granuloma Pada Radiograf Periapikal Dengan Metode Watershed Dan Klasifikasi Support Vector Machine Fiya Rohmawati; Bambang Hidayat; Suhardjo Suhardjo
eProceedings of Engineering Vol 5, No 1 (2018): April 2018
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Gigi merupakan bagian terkeras yang terdapat di dalam mulut. Apabila kesehatan dan kebersihan gigi tidak diperhatikan maka gigi dapat terserang berbagai macam penyakit gigi, sehingga dapat menimbulkan kelainan di jaringan periapikal gigi. Salah satu jenis kelainan periapikal gigi adalah granuloma. Granuloma disebabkan oleh matinya pulpa dan difusi bakteri. Granuloma akan terjadi sesaat setelah pulpa mati. Karena granuloma merupakan kelainan di jaringan periapikal maka dalam proses diagnosanya dokter gigi memerlukan radiograf dari gigi pasien untuk selanjutnya di analisis. Di dalam menganalisis hasil radiograf sangat dibutuhkan ketelitian agar diagnosa yang dihasilkan akurat. Penelitian yang akan dilakukan berguna untuk membantu dokter gigi menganalisis hasil radiograf gigi pasien dalam mendiagnosa granuloma. Penelitian ini menggunakan metode segmentasi Watershed. Metode ini merupakan metode yang cukup baik dalam menganalisis hasil segmentasi sebuah citra. Untuk pengklasifikasian, sistem ini menggunakan Support Vector Machine. Hasil akurasi sistem yang diperoleh dengan menggunakan metode Watershed dan klasifikasi Support Vector Machine adalah 91.66%.
Estimasi Berat Karkas Sapi Berdasarkan Segmentasi Graph Partitioning Dengan Klasifikasi Knn Sri Muliawati; Bambang Hidayat; Sjafril Darana
eProceedings of Engineering Vol 3, No 2 (2016): Agustus, 2016
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Ternak bisa dibagi menjadi dua, yaitu ternak dengan ukuran kecil dan ternak dengan ukuran besar. Ternak ukuran kecil contohnya adalah kelinci, domba, dan kambing. Sedang ternak ukuran besar contohnya adalah sapi. Mengukur berat ternak ukuran kecil lebih mudah, sedang yang ukuran besar sedikit lebih sulit. Berat seekor sapi dapat diperkirakan dengan mengukur lingkar dada dan panjang badan dari masing-masing sapi. Sedang berat karkas sendiri berkisar antara 52-58% dari bobot hidup sapi. Cara lain adalah penimbangan dengan menggunakan timbangan yang dinilai masih kurang efisien karena ukuran timbangan yang cukup besar dan tidak fleksibel untuk dibawa-bawa. Untuk mendapat cara yang lebih praktis, bidang teknologi dapat diimplementasikan untuk membantu memberi alternatif solusi atas permasalahan tersebut. Dengan pengolahan citra, bisa diketahui ukuran fisik dari sapi yang tampak dalam gambar dua dimensi. Dalam Tugas Akhir ini, penulis membahas bagaimana mengestimasi berat karkas yang dihasilkan dari seekor sapi. Terdapat beberapa metode yang bisa digunakan untuk mengestimasi berat karkas sapi. Pada Tugas Akhir ini penulis menggunakan metode Graph Partitioning dengan klasifikasi K-Nearest Neighbor (K-NN) yang diawali dengan preprocessing yang terdiri dari operasi resize dan contrast stretching. Hasil penelitian Tugas Akhir ini didapatkan nilai akurasi estimasi berat karkas sapi adalah sebesar 82.19% dengan waktu komputasi 21.44 detik. Diharapkan dengan kemampuan sistem ini, dapat membantu penjual atapun pembeli sapi untuk mengetahui berat karkas sapi dengan cara yang lebih efisien. Kata kunci : Segmentasi, Graph partitioning, Klasifikasi, K-NN
Identifikasi Akor Gitar Menggunakan Algoritma Harmonic Product Spectrum Tito Permana; Bambang Hidayat; Eko Susatio
eProceedings of Engineering Vol 1, No 1 (2014): Desember, 2014
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Musik merupakan sebuah suara dari lantunan nada dengan frekuensi-frekuensi yang dapat ditentukan. Manusia seringkali tidak hanya menikmati musik dengan mendengarnya saja, namun juga kemudian memainkan musik tersebut. Namun manusia memiliki indera pendengaran yang terbatas terhadap suara. Tidak semua orang dapat dengan tepat mendengar suara suatu nada kemudian memainkan nada tersebut, hanya orang tertentu yang indera pendengarannya sudah terbiasa dan terlatih yang dapat melakukannya. Oleh karena itu penulis membuat aplikasi untuk menampilkan akor gitar dari sebuah rekaman gitar sehingga pengguna aplikasi ini dapat mengetahui akor yang terbentuk saat rekaman gitar tersebut didengarkan. Akor merupakan rangkaian nada-nada dasar yang tersusun secara teratur dari sebuah tangga nada dan bisa merepresentasi tangga nada tersebut. Frekuensi nada pada akor juga mewakili frekuensi nada dasarnya. Misalnya, frekuensi nada A=440 Hz maka frekuensi nada dasar A juga sama dengan kelipatannya, yaitu 110 Hz, 220 Hz dan seterusnya. Begitu pula untuk nada dasar yang lain. Pada Tugas Akhir ini sistem akan mengambil nada dasar dari suara rekaman gitar dalam bentuk file yang sudah ada. Setelah itu sinyal suara tersebut akan diproses dengan algoritma Harmonic Product Spectrum dimana kita membagi sinyal input ke segmen dengan menerapkan jendela Hanning, dimana ukuran jendela dan ukuran hop diberikan sebagai masukan. Untuk setiap jendela, kita memanfaatkan Short- Time Fourier Transform untuk mengubah sinyal masukan dari domain waktu ke domain frekuensi. Setelah input dalam domain frekuensi, lalu diterapkan teknik Spectrum Produk Harmonic ke setiap jendela. HPS melibatkan dua langkah: downsampling dan perkalian. Untuk downsample, spektrum di-downsample dua kali dalam setiap jendela dengan cara downsample: pertama, kita downsample spektrum asli menjadi dua window dan kedua kalinya menjadi tiga window. Setelah ini selesai, kita kalikan tiga spektrum bersama-sama dan menemukan frekuensi yang sesuai dengan puncak (nilai maksimum). Frekuensi ini merupakan frekuensi dasar dari window- window tersebut. Penelitian ini dilakukan untuk mengetahui keakuratan dari algoritma Harmonic Product Spectrum terhadap penentuan nada dan akor berdasarkan frekuensi. Tingkat keakuratan ditentukan dari akor benar yang diharapkan muncul dan akor salah yang tidak diharapkan muncul pada saat perpindahan akor. Untuk menghasilkan banyak kemungkinan keakuratan, window dirancang dalam beberapa segmentasi yang berbeda. Dari rancangan tersebut, hasil keakuratan sistem yang telah dibuat, mencapai 70 % hingga 85 % dengan keakuratan total dari seluruh data sebesar 75,68 %. Untuk perubahan nilai FFT, jika Nilai FFT lebih besar dari 10*Fs dengan nilai Fs sebesar 44100 Hz berpengaruh terhadap akurasi sistem dalam mengidentifikasi akor dengan keakuratan total dari seluruh data sebesar 45,6 %.Kata kunci : akor, Harmonic Product Spectrum, frekuensi nada 
Pengklasifikasian Tinggi Dan Berat Badan Manusia Berdasarkan Citra Telapak Kaki Dengan Metode Discrete Cosine Transform (dct) Dan Nearest Neighbor (nn) Berbasis Android Muhammad Rafki; Bambang Hidayat; Suci Aulia
eProceedings of Engineering Vol 3, No 2 (2016): Agustus, 2016
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Tinggi dan berat badan merupakan salah satu parameter untuk mengidentifikasi seseorang. Untuk mengidentifikasi tinggi dan berat badan biasanya dilakukan secara manual, selain dengan cara manual menggunakan alat pengukur tinggi badan dan penimbang berat badan juga dapat menggunakan informasi yang terkait dengan telapak kaki. Maka di implementasikan sistem pengukur tinggi badan dan berat badan manusia melalui telapak kaki berbasis Android.Dalam Tugas Akhir ini penulis membahas bagaimana cara mengestimasi tinggi dan berat badan dari citra telapak kaki. Terdapat beberapa metode yang dapat digunakan untuk mengestimasi tinggi dan berat badan. Pada Tugas Akhir ini penulis menggunakan metode Discrete Cosine Transform (DCT), Histogram Equalization, Otsu Thresholding dan dengan klasifikasi Nearest Neighbor (NN) yang diawali dengan proses prepocessing yang terdiri dari konversi citra ke grayscale, Histogram Equalization, Otsu Thresholding , dan konversi gambar ke black and white.Hasil penelitian Tugas Akhir ini didapatkan nilai akurasi deteksi tinggi badan terbaik adalah 87,50% pada citra 1500x1060 dan waktu komputasi tercepat 2,87 detik pada citra 800x566 dan rata-rata nilai akurasi deteksi berat badan adalah 87,06%.Kata Kunci: Telapak Kaki, Tinggi Badan, Berat Badan, Discrete Cosine Transform (DCT), Nearest Neighbor (NN).
Pengolahan Citra Radiograf Periapikal Pada Deteksi Pulpitis Irreversibel Dan Reversibel Menggunakan Metode Principal Component Analysis (pca) Dan Watershed Berbasis Android Imam Abdul Hakim; Bambang Hidayat; Suhardjo Suhardjo
eProceedings of Engineering Vol 4, No 1 (2017): April, 2017
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Gigi merupakan bagian tubuh terkeras yang terdapat di dalam mulut. Penyakit gigi yang meyerang bagian pulpa disebut pulpitis. Pulpitis merupakan peradangan pada jaringan pulpa yang menimbulkan rasa nyeri. Klasifikasi pulpitis ada dua yaitu irreversibel dan reversibel. Pulpitis reversibel dan irreversibel masih sulit didiagnosa secara objektif. Hasil diagnosa menjadi dasar dari pengambilan keputusan untuk mengatasi masalah pulpitis tersebut. Pada penelitian ini dilakukan pengolahan citra radiograf periapikal pada deteksi pulpitis menggunakan metode watershed, principal component analysis (PCA) dan melakukan klasifikasi dengan algoritme euclidean distance. Metode watershed digunakan untuk mendapatkan region of interest (ROI) berupa bagian pulpa dari objek. Metode PCA digunakan untuk ekstraksi ciri. Algoritme euclidean distance digunakan untuk mengklasifikasikan objek berdasarkan data pembelajaran yang jaraknya paling dekat dengan objek tersebut. Hasil dari penelitian ini berupa sistem pengolahan citra digital radiograf periapikal mampu mendeteksi pulpitis dan mengklasifikasikan jenisnya. Pada penelitian ini dihasilkan performansi terbaik dengan tingkat akurasi 85%, sensitivitas 80%, dan spesifisitas 100%. Dengan melakukan pengolahan citra radiograf periapikal pada deteksi pulpitis irreversibel dan reversibel ini dapat membantu para dokter gigi sebagai diagnosa pendukung untuk menentukan tindakan atas permasalahan pulpitis yang diderita pasien. Kata kunci: Pulpitis, Watershed, PCA, Euclidean distance
Deteksi Dan Klasifikasi Tingkat Keparahan Retinopati Diabetes Dengan Menggunakan Metode Klasifikasi K - Nearest Neighbor Yafis Sukma Kurniawan; Bambang Hidayat; Suci Aulia
eProceedings of Engineering Vol 2, No 1 (2015): April, 2015
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Retinopati diabetes merupakan kerusakan yang terjadi pada mata akibat dari penyakit dibetes mellitus yang menahun. Tingginya kadar glukosa dalam darah adalah penyebab pembuluh darah kapiler kecil menjadi pecah dan dapat  menyebabkan kebutaan. Menurut artikel pada harian online kompas terbitan 15/08/08, diestimasi bahwa jumlah penderita diabetes yang semula berjumlah 117 juta pada tahun 2000 akan meningkat mennjadi 366 juta di tahun 2030[4]. Pada harian online itu juga dikabarkan bahwa di asia, diabetes akan menjadi “epidemi” dikarenakan pola makan orang Asia yang berkarbohidrat juga berlemak tinggi dan itu semua tidak diimbangi dengan olahraga yang baik. Dengan naiknya jumlah penderita diabetes maka akan berbanding lurus dengan naiknya  jumlah penderita retinopati diabetes.  Pada tugas akhir  sebelumnya telah dibuat  sistem yang  dapat mendeteksi dan mengklasifikasikan penyakit retinopati diabetes dengan akurasi sebesar 67,86%[9]. Pada tugas akhir kali ini dibuat perangkat lunak yang dapat mendeteksi dan mengklasifikasi tingkat keparahan retinopati diabetes dengan menggunakan transformasi curvelet  dan metode klasifikasi K – Nearest  Neighbor (KNN). Sistem ini dapat menggolongkan tingkat keparahan retinopati diabetes tipe non proliferative kedalam empat tingkatan, yaitu non diabetic retinopathy, mild, moderate, dan severe. Dari hasil analisis dan pengujian yang dilakukan pada sistem ini, didapatkan tingkat akurasi sebesar 65%. Kata kunci : Retinopati diabetes, Curvelet, K – Nearest Neighbor.
Co-Authors Abdul Hafidh Zaini Ade Pitra Hermawan Adi Aufarachman Putra Bambang Dwi Adrian Firmansyah Taufik Afina Fatharani Agre Liana Bella Clara Ahmad Mumtaz Ahsanu Qornan Al Brando Ardes Harjoko Alif Fajri Ryamizard Alifdio Hendra Putra Alifia Fathur Rizkiyah Alvin Matthew Valentino Amelia Shaffira Arifin Andre Danika Andrean David Chrismadandi Andri Slamet Subandrio Andri Slamet Subandrio Andri Slamet Subandrio Angrinda Kharisma Putri Anissa Widya Devianti Annisa Adlina Mulyaningrum Annisa Faraditha Basuki Annisa Rizki Akmalia Annisa Yandra Oktora Apriannor Apriannor Aptanti Aptanti Arfhan Setiawan Ari Septayuda Arina Fadhilah Arisalsabila Wahyu Bawono Ariza Rizky Pratama Arvieda Nadya Astin Santosa Auliado Centaury Ayu Tri Yulina Ayu Trisna Hayati Ayu Trisna Hayati Azarine Sandi Rizcky Bagas Yufa Ardana Bani Aulia Rahman Bella Yunita Kusuma Carolus Ferdy Setiaji Hartoko Chyndi Mery Da Vega Clara Amanda Daniel Ade Aryono Dara Aulia Feryando David Vianza Dea Delia Lestari Dela Tantri Riyandani Denanda Syahnurreza Auladi Desi Dwi Prihatin Desti Madya Saputri Devi Naafiyandika Sutopo Devi Rahmaditra Devi Utami Nur Indah Sari Devita Ba'diatan Fitri Dewa Gede Eduard Pramana Morton Dewi Zakiawati Dias Wardana Diati Levi Putri Dimas Anugrah Putra Dinda Rizki Taningrum Diny Hafizha Amelia Diovani Estidia Akbar Distyan Putra Agrisativa Dita Kusuma Wardani Dudi Aripin Dwi Sukma Bestry Edrea Cioksidy Cioksidy Eka Yuwitaning Eko Susatio Elline Constantia Elok Novita Pramunti Elyza Dilla Susanti Endang Yuni Endang Yuni Setyowati Enrico Wiratama Purwanto Erryna Indah Kurniawati Erty Kasdiantika Erwin Susanto Faber Tommy Johannes Nauli Fadhilah Fadhilah Fahmi Oscandar Fahmi Oscandar Fahmi Oscandar Fahmi Oscandar Fahmi Oscandar Fahmi Oscandar Fahmi Oscandar Fahmi Oskandar Fanny Oksa Salindri Farah Fadhilah Hermahiroh Farisah Qisthina Rekamasanti Farras Duto Hestopo Fauziyyah Rachmawati Fina Maharani Firda Isfandary Badryani Fiya Rohmawati Galuh Laksmita Ranggi Garizah Ganih Pranoto Gelar Budiman Ghina Oktavia Gita Meirinda H. Suhardjo H. Suhardjo Haidar Maghrifa Ahmad Hamdan Gustiawidi Hanif Jaka Permana Hasna Nur Afina Helena Jasmine Clarissa Hermas Ahadhi Septiaji Hervyn Junianto Kuen Hilal Nuha Hilman Fauzi, Hilman Hindrya Meidina Fresty Husnul Himmah I Nyoman Apraz Ramatryana I Putu Aditya Widiatama Ibrahim Adilla Ida Ayu Dian Purnama Sari Imam Abdul Hakim Indah Restyana Indri Ruth Simatupang Inka Hashari Insani Sekar Wangi Inung Wijayanto Irene Dewi Kurniawati Irma Safitri Irvie Augustin Israndy Yainahu Jangkung Raharjo Johan Arif Johan Arif Johan Arif Karina Permatasari Katamso Katamso Kevin Prathama Nugraha Khairunnisa Alfiyanti Suharja Kharisma Meccasia Kinanti Balqis Maharani Kintan Veriana Krisma Asmoro Kusumawardhani, Eka Leanna Vidya Yovita Ledya Novamizanti Listhyani Dhianira Sarie Listianto Raharjo Luluk Listyani Ayuningtyas Lutfi Ahmad Lyra Vega Ugi Magdarita Haris Mahdan Muqottirullah Al Askariyy Maya Amiriyanti Maya Sari Samosir Melina Melina Mentari Pangestu Mielda Fauzi Mila Muliani Mirrah Aliya Azzahra Mohamad Fikri Permana Mona Renasari Muhamad Fatah Muhamad Luthfi Wahid Muhammad Fatah W Muhammad Fatah Wiyatna Muhammad Ilham Fauzi Muhammad Rafki Muhammad Taufiq Alkautsar Mujib Ramadhan Hidayat Murnisari Darjan Mutia Henarta Mutiara Ulfach Nabila Sarashadarti Nadia Aisyah Permata Putri Nadia Putri Nurpadilah Nadiya Ibrahim Nanang Adi Setyawan Neng Anggi Iliadi Neng Wiwin Wiyandini Ngurah Putu Oka Harybuana Niki Ihsanul Hakim Nina Djustiana Nova Aditya Utami Novita Yusnia Tri Handayani Nur Andini Nur Hikmah Maulida Nur Ibrahim Nur Inastia Alfianingrum Nur Shabrina Nurul Septiyani Syafril Prasetyo Tri Herlambang Pritta Anggraeni Anindyasari Putu Cinthia Wikessa Putu Wahyu Saputra Qintan Nurma Buana Rakhman Kurniadi Rani Fauzana Rasinia Vadilla Nova Ratri Dwi Atmaja Regha Julian Pradhana Reinhard Immanuel Abraham Reni Anggraini Reni Dyah Wahyuningrum Restu Pujiyanti Hidayat Restu Wardani Reza Ahmad Nurfauzan Rian Febrian Umbara Rian Umbara Rikko Ismail Hardianzah Risva Ulva Fauzia Rita Magdalena Rizkiana Rani Sejahtera Rizky Setyaningrum Rizqi Shaumi Puspa Ayu Amanda Rosa Chulia Rahmah Rr Ayuningtias Setiaji Rudy Hartanto Rudy Hartanto Rudy Hartanto Ryan Bagus Wicaksana Ryan Bagus Wicaksono Sarah Aura Nadienda Saraswati Saraswati Setyo Nugroho Wibowo Shabrina Elha Putri Shofiya Rona Gemintang Sigit Nugroho SJAFRIL DARANA Sjafril Darana Sjafril Darana Sofia Sa’idah SOFIA SAIDAH Sri Muliawati Suci Amelia Suci Aulia Sugeng Winarno Sugondo Hadiyoso Suhardjo MS Suhardjo MS Suhardjo Sitam Suhardjo Sitam Suhardjo Suhardjo Suhardjo Suhardjo Suhartono Tjondronegoro Suken Achmad Aziz Suryo Adhi Wibowo Syahida Anugrah Kausar Syakira Nurina Shaputri Syelanisa Nabilla Syifa Mellynda Prisca Tengku Ahmad Wira Giovany Tikki Capriati Marieski Tita Haryanti Tito Permana Ulfa Yuliani Unang Sunarya Utari Hustita Dewi Vallen Ariesandi Vanesa Ditalia Vasya Aulia Viona Apryaleva Vivi Oktaviani Damanik Wijayanti, Lumastari Ajeng Wulandari Setiawati Wulandary Ika Hanesia Yafis Sukma Kurniawan Yeni Ernita Kusuma Wardani YULI SUN HARIYANI Yun Mukmin Akbar Yuti Malinda Yuti Malinda Yuti Malinda Zafer Ozcan Zagitha Devy Harerra Zahrana Hermulyani Zarka Lazuardi Putera