Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Sinergi

A simplified dental caries segmentation using Half U-Net for a teledentistry system Kadarina, Trie Maya; Iklima, Zendi; Priambodo, Rinto; Riandini, Riandini; Wardhani, Rika Novita; Setiowati, Sulis; Jusoh, Mohd Taufik
SINERGI Vol 28, No 2 (2024)
Publisher : Universitas Mercu Buana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22441/sinergi.2024.2.005

Abstract

High-reliability diagnostic equipment efficiently supported by a computer-based diagnostics system. For instance, a computational approach establishes a model that can diagnose diseases. Artificial intelligence has been applied to aid in the field of medical imaging. Classification, prediction, and localisation of lesions or dental caries greatly minimise the load and difficulties for clinical practitioners. In this study, U-Net architectures are simplified to propose the feature reduction of the decoder layers. This simplification of U-Net architectures is utilised for segmented dental caries images. This paper simplified the U-Net decoder layers into the level of blocks Half-UNet () and Half-UNet (). The Half-UNet structural model surpasses the U-shaped structural model in terms of efficiency and segmentation capabilities. The simplification of the UNet architecture outperformed using Half-UNet 0.83% of the dice coefficient. The Half-UNet design is able to preserve model performance in segmenting actual images and ground truth against expected ground truth.
Real-time dental caries segmentation with an efficient Deformable U-Net (DU-Net) for teledentistry system Iklima, Zendi; Kadarina, Trie Maya; Salamah, Ketty Siti; Sentosa, Arrival Dwi
SINERGI Vol 29, No 2 (2025)
Publisher : Universitas Mercu Buana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22441/sinergi.2025.2.015

Abstract

Digital technology has greatly improved teledentistry by facilitating telediagnostics and teleconsultations, particularly benefiting those in remote areas. Additionally, AI advancements enhance diagnostic accuracy and streamline clinical decision-making, reducing costs and resource disparities in dental care. This study presents an improved U-Net architecture, Deformable U-Net (DU-Net), for semantic dental caries segmentation, leveraging deformable convolutions to dynamically adjust sampling points for improved feature extraction and reduced computational redundancy. By connecting encoder-decoder blocks via skip-connections, the DU-Net architecture enables efficient real-time segmentation and balance accuracy while reducing computational demands. The deformable block in DU-Net and DDR U-Net shows a balanced performance and efficiency while maintaining accuracy despite reduced FLOPs. The proposed architecture was implemented in real-time dental caries segmentation on a Dual Core Cortex A72 system and web server. It shows a significant improvement in Dice score, reducing CPU and memory usage compared to conventional U-Net models. Moreover, the DU-Net and its half variants achieved competitive performance with much lower computational demands makes suitable for web servers and embedded applications. The result highlights the DU-Net capability to optimize both computational efficiency and segmentation accuracy, offering a promising solution for real-world applications where speed and resource management are critical, particularly in the medical imaging field.