Claim Missing Document
Check
Articles

Found 4 Documents
Search

Evaluation of the Sustainability of Organizational Welfare and Human Resources to Improving Long-Term Performance R.A, Ria Andriany; Hardy, Hardy; Asrul, Asrul; Maslim, Maslim; Megawaty, Megawaty
Paradoks : Jurnal Ilmu Ekonomi Vol. 8 No. 2 (2025): Februari - April
Publisher : Fakultas Ekonomi, Universitas Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57178/paradoks.v8i2.1157

Abstract

This study evaluates the sustainability of organizational welfare and human resource (HR) management in enhancing long-term corporate performance. It explores how sustainable HRM strategies and employee welfare policies contribute to workforce stability, engagement, and corporate resilience while aligning with Environmental, Social, and Governance (ESG) standards. This research adopts a Systematic Literature Review (SLR) approach to synthesize existing studies on HR sustainability, employee well-being, and corporate performance. The study systematically reviews academic literature from leading databases, focusing on theoretical perspectives, empirical findings, and best practices in HR sustainability and organizational welfare. The analysis identifies critical themes, trends, and research gaps to understand the topic comprehensively. The findings suggest that sustainable HR policies positively impact employee productivity, innovation, and corporate reputation. Organizations that integrate HR sustainability within their business strategies experience higher workforce engagement, lower turnover rates, and improved adaptability to industry disruptions. However, challenges persist, including the trade-off between cost efficiency and long-term workforce investment and difficulties in aligning HR sustainability with ESG frameworks and digital transformation. This study underscores the need for strategic HR investments, emphasizing continuous learning, workforce well-being, and ethical leadership. The findings provide business leaders, policymakers, and HR professionals with actionable insights to develop sustainable workforce policies that drive corporate growth, employee satisfaction, and competitive advantage.
Implementasi Design Thinking dalam Pengembangan Aplikasi DIGITS di Telkom Schools: Studi Kasus Transformasi Digital Pendidikan Salam, Karta Negara; Hardy, Hardy; Maslim, Maslim; Marsela, Ibrahim; Megawaty, Megawaty
Advances in Management & Financial Reporting Vol. 3 No. 3 (2025): June - September
Publisher : Yayasan Pendidikan Bukhari Dwi Muslim

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.60079/amfr.v3i3.627

Abstract

Tujuan: Transformasi digital di sektor pendidikan Indonesia menjadi kebutuhan mendesak seiring meningkatnya penetrasi internet dan kebijakan digitalisasi nasional. Penelitian ini bertujuan untuk mengeksplorasi proses pengembangan dan implementasi aplikasi DIGITS (Digital Telkom School) sebagai solusi teknologi pendidikan berbasis pendekatan Design Thinking di lingkungan Telkom Schools. Metode Penelitian: Penelitian ini menggunakan pendekatan studi kasus dengan metode design thinking yang terdiri dari lima tahapan: empathize, define, ideate, prototype, dan implement. Data diperoleh melalui wawancara mendalam, observasi partisipatif, dan survei yang melibatkan guru, siswa, orang tua, dan staf administrasi di Telkom Schools. Hasil dan Pembahasan: Hasil penelitian menunjukkan bahwa DIGITS berhasil mengintegrasikan layanan pembelajaran, administrasi, dan komunikasi dalam satu platform digital. Fitur utama seperti pembayaran daring, akses informasi akademik real-time, komunikasi langsung, dan repositori sumber belajar terbukti efektif mengatasi fragmentasi sistem dan keterlambatan informasi. Tantangan seperti keterbatasan koneksi dan adaptasi pengguna dapat dimitigasi melalui pelatihan intensif dan pengembangan aplikasi versi ringan. Implikasi: Penelitian ini memberikan kontribusi teoritis terhadap pemanfaatan design thinking dalam pengembangan teknologi pendidikan dan implikasi praktis bagi institusi pendidikan dalam merancang solusi digital yang relevan, berkelanjutan, dan berorientasi pada kebutuhan pengguna.
Implementasi smart learning menggunakan ChatGPT pada SMAS Bodhicitta Medan Pardosi, Irpan Adiputra; Hardy, Hardy; Pipin, Sio Jurnalis; Tanti, Tanti; William, William
SELAPARANG: Jurnal Pengabdian Masyarakat Berkemajuan Vol 8, No 2 (2024): June
Publisher : Universitas Muhammadiyah Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31764/jpmb.v8i2.22549

Abstract

AbstrakKegiatan Pengabdian kepada Masyarakat (PkM) ini bertujuan untuk memberikan pelatihan kepada 27 guru dan 18 siswa di SMAS Bodhicitta Medan tentang implementasi Smart Learning menggunakan ChatGPT, dengan fokus pada personalisasi pengalaman belajar dan integrasi teknologi berbasis artificial intelligence (AI) pada pembelajaran. Metode pelaksanaan meliputi identifikasi kebutuhan, perencanaan dan desain pelatihan, pelaksanaan pelatihan, serta monitoring dan evaluasi melalui pre-test dan post-test. Hasil pra-test menunjukkan bahwa sebelum pelatihan, pemahaman siswa dan guru tentang smart learning dan penggunaan ChatGPT masih terbatas. Namun, hasil post-test menunjukkan peningkatan signifikan dalam pemahaman dan penerimaan terhadap integrasi ChatGPT dalam pembelajaran. Survei penerimaan mengindikasikan bahwa 82% siswa dan 78% guru merasa penggunaan ChatGPT efektif dan memenuhi kebutuhan pembelajaran. Meskipun beberapa responden menyatakan kurang efektif dalam penggunaan teknologi AI dalam pembalajaran, namun tingkat penerimaan yang tinggi menunjukkan respons positif terhadap penggunaan teknologi AI dalam kelas, menandakan pentingnya adaptasi metode pembelajaran yang inovatif. Kegiatan ini berhasil meningkatkan kualitas pembelajaran dan mendorong integrasi teknologi canggih dalam pendidikan. Kata kunci: ChatGPT; smart learning;  artificial intelligence, pelatihan. Abstract This community service activity aims to provide training to 27 teachers and 18 students at SMAS Bodhicitta Medan on the implementation of Smart Learning using ChatGPT, with a focus on personalising the learning experience and integrating artificial intelligence (AI)-based technology in learning. The implementation method includes needs identification, training planning and design, training implementation, and monitoring and evaluation through pre-test and post-test. The pre-test results showed that before the training, students' and teachers' understanding of smart learning and the use of ChatGPT was still limited. However, the post-test results showed a significant increase in understanding and acceptance of ChatGPT integration in learning. The acceptance survey indicated that 82% of students and 78% of teachers felt the use of ChatGPT was effective and fulfilled the learning needs. Although some respondents expressed a lack of effectiveness in the use of AI technology in teaching, the high level of acceptance indicates a positive response to the use of AI technology in the classroom, signalling the importance of adapting innovative learning methods. This activity successfully improved the quality of learning and encouraged the integration of advanced technology in education. Keywords: chatgpt; smart learning;  artificial intelligence; training.
A Smart Architecture for Stunting Prediction: Implementing the SOM–Voting Classifier on Healthcare Big Data Kelvin, Kelvin; Winardi, Sunaryo; Sinaga, Frans Mikael; Hardy, Hardy; Panjaitan, Erwin Setiawan; Wong, Ng Poi; Ferawaty, Ferawaty; Lim, Justine; Wijaya, Grace Putri
Indonesian Journal of Artificial Intelligence and Data Mining Vol 8, No 3 (2025): November 2025
Publisher : Universitas Islam Negeri Sultan Syarif Kasim Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24014/ijaidm.v8i3.38000

Abstract

Childhood stunting is a persistent public health challenge in Indonesia. This study developed a predictive classification model using healthcare data from hospitals in Medan to enable early identification of at-risk children. A novel framework was proposed that integrated an unsupervised Self-Organizing Map (SOM) for feature engineering with a supervised Voting Classifier ensemble, which combined a Support Vector Classifier (SVC), Random Forest (RF), and Gradient Boosting (GB). The proposed framework achieved an accuracy of 100% on the test set, a substantial improvement over the 91.67% accuracy of the baseline Voting Classifier without SOM. While this result highlighted the model's high predictive potential, it must be interpreted cautiously, acknowledging the need for validation on more diverse datasets to ensure generalizability. The findings demonstrated that this hybrid machine learning approach can serve as a powerful decision-support tool, enabling proactive clinical interventions and aiding public health officials in strategically allocating nutritional resources to support Indonesia's national stunting reduction goals.