Claim Missing Document
Check
Articles

Smart Food Dehidrator Berbasis IoT Untuk Menghasilkan Cemilan Sehat Refni Wahyuni; Ilzi Adrolis SNR; Destina Destina; Nur Syari’ah; Daniel Luis Kristian Sirait; Vita Rahmatiah Syakirah
INTECOMS: Journal of Information Technology and Computer Science Vol 6 No 2 (2023): INTECOMS: Journal of Information Technology and Computer Science
Publisher : Institut Penelitian Matematika, Komputer, Keperawatan, Pendidikan dan Ekonomi (IPM2KPE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31539/intecoms.v6i2.7925

Abstract

Cara mengantisipasi terjadinya kerugian yang besar, masyarakat mengolah buah dan sayur dengan cara mengeringkan. Lama pengeringan dengan penjemuran tergantung pada cuaca, jika cerah pengeringan bisa berlangsung selama 2-3 hari bahan kering dengan kadar air sekitar 20% (Imam, 2013). Pengeringan berbasis teknologi sudah ada, tetapi masih menggunakan pengontrolan masih manual, berdasarkan permasalahan diatas maka penelitian ini tentang smart food dehydrator berbasis IoT, monitoring suhu dan kelembaban sudah menggunakan IoT yaitu bisa dikendalikan dari jarak jauh. Metode yang digunakan adalah metode prototype Adapun hasil pengujian dalam proses pengeringan buah dan sayur menggunakan waktu lebih kurang 3 jam menggunakan lampu pijar 4 buah daya 75 watt, hasil pengeringan bagus dan tidak ada perubahan warna seperti terpanggang.Hasil pengujian dapat disimpulkan dengan menggunakan smart food dehydrator berbasis IoT, proses pengeringan buah dan sayur menjadi sebuah cemilan bekerja dengan baik dan perubahan warna dari buah dan sayur hanya lebih pudar dari buah dan sayur segar.
Smart Egg Incubator Based on IoT and AI Technology for Modern Poultry Farming Wahyuni, Refni; Irawan, Yuda; Febriani, Anita; Nurhadi, Nurhadi; Tri Saputra, Haris; Andrianto, Richi
ILKOM Jurnal Ilmiah Vol 16, No 2 (2024)
Publisher : Prodi Teknik Informatika FIK Universitas Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33096/ilkom.v16i2.1957.134-144

Abstract

The productivity of egg hatching in the poultry industry is often hindered by conventional methods, resulting in low hatch rates and slow production. This study introduces the UHTP (Universitas Hang Tuah Pekanbaru) Smart Egg Incubator, which incorporates Internet of Things (IoT) and Artificial Intelligence (AI) technologies, specifically the Mamdani Fuzzy Logic Algorithm, to enhance egg hatchability. The incubator features a 100-egg capacity, automatic temperature and humidity control, cooling systems, and real-time monitoring via mobile devices. It also includes a camera for movement detection, capturing images of hatching eggs, and sending notifications to users. The automatic egg-turning mechanism ensures even temperature distribution. Experimental results show that the incubator maintains optimal temperatures between 37.7°C and 38.8°C, with successful hatching observed on the 19th day. The fuzzy logic AI system effectively manages environmental changes, ensuring a stable hatching process by dynamically adjusting the conditions within the incubator. The user-friendly interface and remote monitoring capabilities provide convenience and efficiency for poultry farmers. This innovative design significantly improves hatch rates and supports the economic productivity of chicken farming, offering practical solutions for modern poultry farming. The integration of this AI technology can lead to higher profitability and sustainability in poultry farming, addressing common challenges such as inconsistent environmental conditions and labor-intensive processes, thus contributing to the advancement of agricultural practices
Improved Hybrid Machine and Deep Learning Model for Optimization of Smart Egg Incubator Febriani, Anita; Wahyuni, Refni; Mardeni, Mardeni; Irawan, Yuda; Melyanti, Rika
Journal of Applied Data Sciences Vol 5, No 3: SEPTEMBER 2024
Publisher : Bright Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47738/jads.v5i3.304

Abstract

This research develops a Smart Egg Incubator that integrates IoT technology, fuzzy logic, and the YOLOv9-S Deep Learning model to enhance the efficiency and accuracy of hatching chicken eggs. The system automatically regulates temperature and humidity, maintaining temperature between 34.3°C and 39.5°C and humidity between 57% and 68% with a fuzzy logic success rate of 90%. The YOLOv9-S model enables realtime chick detection and classification with mAP50 of 93.7% and mAP50:95 of 71.3%. Efficiency improvements are measured through the success rate of fuzzy logic and improved detection and classification accuracy. This research also uses CNN for high-accuracy object classification, with model optimization performed using SGD to accelerate convergence and improve accuracy. The results indicate significant potential in improving the egg hatching process. The high accuracy and robustness of the YOLOv9-S model enhance real-time monitoring and decision-making in hatcheries, leading to higher hatching success rates, reduced chick mortality, and increased operational efficiency. Future designs can leverage these technologies to create more intelligent, automated systems requiring minimal human intervention, enhancing productivity and scalability. Additionally, IoT and deep learning integration can extend to other poultry farming areas, such as broiler production and disease monitoring, providing a comprehensive approach to farm management. Future research could focus on integrating the YOLOv10 model for even higher accuracy and efficiency, exploring diverse data augmentation techniques, optimizing fuzzy logic algorithms, and integrating additional sensors like CO2 and advanced humidity sensors to improve environmental regulation. These advancements would benefit not only smart incubator applications but also broader poultry farming areas.
Analisa Prioritas Bandwidth Menggunakan Metode HTB (Hierarchical Token Bucket) Studi Kasus : SMK Taruna Mandiri Pekanbaru Yuda Irawan; Herianto; Siti Aisyah; Refni Wahyuni
SATIN - Sains dan Teknologi Informasi Vol 8 No 1 (2022): SATIN - Sains dan Teknologi Informasi
Publisher : STMIK Amik Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33372/stn.v8i1.814

Abstract

Banyaknya kebutuhan dunia pendidikan yang mengharuskan pihak pengembang aplikasi dalam mengembangkan berbagai terobosan teknologi untuk mendukung stabilitas dalam berinteraksi. Harga Bandwitdh yang cukup tinggi menyebabkan pihak sekolah melakukan pembatasan jumlah Bandwitdh yang diberikan oleh operator. Semakin meningkatnya kebutuhan akan internet hal ini menjadi permasaalahan bagi pengguna. Permasalahannya adalah semakin banyak yang membuka situs di internet tentu akan mengurangi kuota atau paket data. Untuk menyelesaikan permasalahan ini maka dilakukan proses tahapan analisa prioritas bandwidth menggunakan metode HTB (Hierarchical Token Bucket). Metode ini mempunyai kelebihan dalam pembatasan trafik pada tiap level maupun klasifikasi, sehingga bandwidth yang dipakai level yang tinggi dapat digunakan atau dipinjam oleh level yang lebih rendah. Berdasarkan hasil analisa dan pengujian yang telah dilakukan Penulis, maka dapat disimpulkan bahwa Metode antrian Hierarchical Token Bucket dinilai lebih efektif membagi bandwidth secara adil dan merata kepada masing-masing client yang membutuhkan bandwidth, terlihat dari grafik perhitungan nilai QoS yang telah dilakukan. Dari hasil perhitungan dalam pengujian metode HTB melalui download berkas, nilai rata-rata yang diperoleh berdasarkan standar kategori TIPHON untuk indeks parameter. Throughtput indeks parameter delay bernilai 4 dengan indeks parameter jitter indeks parameter packet loss.
A Comprehensive Stacking Ensemble Approach for Stress Level Classification in Higher Education Fonda, Hendry; Irawan, Yuda; Melyanti, Rika; Wahyuni, Refni; Muhaimin, Abdi
Journal of Applied Data Sciences Vol 5, No 4: DECEMBER 2024
Publisher : Bright Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47738/jads.v5i4.388

Abstract

This research focuses on developing a comprehensive ensemble stacking model for the classification of student stress levels in higher education environments, specifically at Hang Tuah University Pekanbaru. Using a physiological dataset that includes parameters such as SPO2, heart rate, body temperature, systolic, and diastolic pressure, this research categorizes the condition of college students into four main categories: anxious, calm, tense, and relaxed. The data taken from public health centers in the period 2021 to 2024 was processed using the SMOTE technique to overcome data imbalance and K-Fold Cross Validation for model validation. In model development, a combination of basic algorithms such as SVM, Logistic Regression, Multilayer Perceptron, and Random Forest is used which is enhanced by boosting techniques through ADABoost, and XGBoost as a meta model. The test results show that the proposed stacking model is able to achieve 95% accuracy, with an AUC of 0.95, which indicates excellent performance in classification. The model not only excels in detecting more extreme stress conditions such as anxiety, but also shows reliable ability in classifying more difficult to distinguish conditions such as tense and relaxed. The conclusion of this study shows that the applied stacking ensemble approach significantly improves prediction accuracy and stability compared to traditional models. For future research, it is recommended to explore the use of deep learning-based meta-models such as LSTM and BiLSTM as well as rotation techniques in stacking to improve model performance and flexibility. The findings are expected to contribute significantly to the development of more sophisticated and effective stress detection models.
Analisis Perbandingan Algoritma Machine Learning dengan SMOTE dan Teknik Boosting dalam Peningkatan Akurasi Yuda Irawan; Refni Wahyuni; Rian Ordila; Herianto
The Indonesian Journal of Computer Science Vol. 13 No. 5 (2024): The Indonesian Journal of Computer Science (IJCS)
Publisher : AI Society & STMIK Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33022/ijcs.v13i5.4368

Abstract

This research explores and enhances accuracy in sentiment classification related to Indonesia's Capital City relocation by combining Naive Bayes (NB), Random Forest (RF), SMOTE, and XGBoost. The study addresses challenges of unbalanced data and complexity in social media sentiment analysis. The combination of RF with SMOTE achieved the highest accuracy at 91.25%, demonstrating SMOTE's effectiveness in balancing the dataset and improving minority class detection. While adding XGBoost slightly reduced accuracy (90.92%), it increased the NB model's accuracy from 77.45% to 85.97% when combined with SMOTE. RF alone reached 87.46% and improved to 88.78% with XGBoost. The study underscores the importance of selecting and combining techniques to maximize sentiment prediction accuracy. Future research could explore deep learning or transformer models for even better results, offering deeper insights into public sentiment and aiding effective policy strategy development.
Optimasi Algoritma C5.0 untuk Peningkatan Akurasi dalam Klasifikasi Ulasan Masyarakat Terhadap Layanan BPJS Kesehatan Mohd Rinaldi Amartha; Refni Wahyuni; Yuda Irawan
JEKIN - Jurnal Teknik Informatika Vol. 5 No. 1 (2025)
Publisher : Yayasan Rahmatan Fidunya Wal Akhirah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.58794/jekin.v5i1.995

Abstract

Penelitian ini bertujuan untuk meningkatkan akurasi klasifikasi sentimen ulasan masyarakat terhadap layanan BPJS Kesehatan dengan mengoptimalkan algoritma C5.0 menggunakan teknik SMOTE dan XGBoost. Pengujian dilakukan dengan beberapa kombinasi, termasuk C5.0, C5.0 dengan XGBoost, C5.0 dengan SMOTE, dan kombinasi ketiganya. Hasil menunjukkan bahwa algoritma C5.0 dasar mencapai akurasi sebesar 67.18%, kombinasi C5.0 dengan XGBoost mencapai 73.55%, C5.0 dengan SMOTE memiliki akurasi 67.00%, sementara kombinasi ketiganya (C5.0, SMOTE, dan XGBoost) memberikan akurasi tertinggi sebesar 80.87%, mengungguli metode lain. Analisis sentimen mengindikasikan bahwa mayoritas ulasan cenderung negatif, menyoroti ketidakpuasan konsumen terhadap layanan BPJS Kesehatan. Peningkatan akurasi yang signifikan dengan penerapan SMOTE dan XGBoost menunjukkan bahwa penanganan ketidakseimbangan kelas dan penguatan model melalui Boosting dapat memperbaiki kelemahan algoritma C5.0. Hal ini memperjelas pentingnya strategi ensemble dalam klasifikasi teks yang kompleks. Temuan ini menunjukkan bahwa penggunaan SMOTE dan XGBoost secara signifikan dapat meningkatkan performa model, membantu dalam memahami persepsi publik secara lebih akurat.
Model Prediksi Risiko Kebakaran Hutan Menggunakan Algoritma Random Forest dengan Seleksi Fitur Lasso Regression Refni Wahyuni; Muhardi; Yulanda; Yuda Irawan
JEKIN - Jurnal Teknik Informatika Vol. 5 No. 1 (2025)
Publisher : Yayasan Rahmatan Fidunya Wal Akhirah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.58794/jekin.v5i1.998

Abstract

Kebakaran hutan di Indonesia telah menyebabkan kerusakan lingkungan, polusi udara, serta dampak serius pada kesehatan dan ekonomi. Penelitian ini mengembangkan model prediksi risiko kebakaran hutan menggunakan algoritma Random Forest dengan seleksi fitur melalui Lasso Regression, berdasarkan data meteorologi dari BMKG (2011-2024). Variabel utama yang digunakan meliputi temperatur rata-rata, kelembapan, curah hujan, dan kecepatan angin. Hasil evaluasi model menunjukkan akurasi 100%, dengan precision, recall, dan F1-score masing-masing 1.00 untuk semua kelas risiko kebakaran. Confusion matrix dan kurva ROC mengonfirmasi kemampuan model dalam mengklasifikasikan setiap instance tanpa kesalahan. Analisis fitur menyoroti temperatur rata-rata, kelembapan, dan curah hujan sebagai faktor utama. Model ini berpotensi menjadi komponen penting dalam sistem peringatan dini kebakaran hutan di indonesia. Penelitian ini merekomendasikan integrasi data tambahan dan implementasi real-time untuk meningkatkan akurasi dan aplikabilitas model di masa mendatang.
Analisa Prioritas Bandwidth Menggunakan Metode HTB (Hierarchical Token Bucket) Studi Kasus : SMK Taruna Mandiri Pekanbaru Yuda Irawan; Herianto; Siti Aisyah; Refni Wahyuni
SATIN - Sains dan Teknologi Informasi Vol 8 No 1 (2022): SATIN - Sains dan Teknologi Informasi
Publisher : STMIK Amik Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33372/stn.v8i1.814

Abstract

Banyaknya kebutuhan dunia pendidikan yang mengharuskan pihak pengembang aplikasi dalam mengembangkan berbagai terobosan teknologi untuk mendukung stabilitas dalam berinteraksi. Harga Bandwitdh yang cukup tinggi menyebabkan pihak sekolah melakukan pembatasan jumlah Bandwitdh yang diberikan oleh operator. Semakin meningkatnya kebutuhan akan internet hal ini menjadi permasaalahan bagi pengguna. Permasalahannya adalah semakin banyak yang membuka situs di internet tentu akan mengurangi kuota atau paket data. Untuk menyelesaikan permasalahan ini maka dilakukan proses tahapan analisa prioritas bandwidth menggunakan metode HTB (Hierarchical Token Bucket). Metode ini mempunyai kelebihan dalam pembatasan trafik pada tiap level maupun klasifikasi, sehingga bandwidth yang dipakai level yang tinggi dapat digunakan atau dipinjam oleh level yang lebih rendah. Berdasarkan hasil analisa dan pengujian yang telah dilakukan Penulis, maka dapat disimpulkan bahwa Metode antrian Hierarchical Token Bucket dinilai lebih efektif membagi bandwidth secara adil dan merata kepada masing-masing client yang membutuhkan bandwidth, terlihat dari grafik perhitungan nilai QoS yang telah dilakukan. Dari hasil perhitungan dalam pengujian metode HTB melalui download berkas, nilai rata-rata yang diperoleh berdasarkan standar kategori TIPHON untuk indeks parameter. Throughtput indeks parameter delay bernilai 4 dengan indeks parameter jitter indeks parameter packet loss.
Optimization of Machine Learning Models for Risk Prediction of DHF Spread to Support Management Strategies in Urban Areas Devis, Yesica; Muhamadiah, Muhamadiah; Yulanda, Yulanda; Irawan, Yuda; Wahyuni, Refni
Journal of Applied Data Sciences Vol 6, No 4: December 2025
Publisher : Bright Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47738/jads.v6i4.898

Abstract

Dengue fever is an endemic disease that poses a serious threat to public health in tropical regions such as Indonesia. Efforts to control this disease require a data-based approach that is able to accurately predict the level of risk so that interventions can be targeted. This study aims to develop a predictive model of DHF risk using ensemble stacking method optimized with Optuna algorithm and integrated into an interactive dashboard based on Streamlit. The dataset used includes environmental, climate, and socio-demographic indicators from 2015 to 2024 with a total of 1,440 data entries. The preprocessing process includes normalization with Standard Scaler, feature selection using LASSO, and label data balancing with the SMOTE method. Model validation was performed using 10-Fold Cross Validation to ensure model generalization to new data. The stacking model is built with three basic algorithms, namely SVM, KNN, and Random Forest, which are combined using Logistic Regression as a meta-learner. The evaluation results show that the model is able to achieve an average accuracy of 97.57%, with high precision, recall, and f1-score values in all three prediction classes (low, medium, high). The ROC-AUC for each class also showed near-perfect performance. The implementation of the model in the Streamlit dashboard allows non-technical users such as health center or health office staff to perform regional risk prediction and obtain data-driven intervention recommendations automatically. This research not only contributes to the development of predictive technology, but also strengthens evidence-based health promotion practices in urban areas. Further research is recommended to integrate IoT-based real-time data and expand the scope of application areas.