Ari Santoso
Departemen Teknik Elektro Institut Teknologi Sepuluh Nopember Surabaya

Published : 7 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : TELKOMNIKA (Telecommunication Computing Electronics and Control)

Engine Torque Control of Spark Ignition Engine using Fuzzy Gain Scheduling Aris Triwiyatno; Mohammad Nuh; Ari Santoso; I Nyoman Sutantra
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 10, No 1: March 2012
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v10i1.763

Abstract

 In the spark ignition engine system, driver convenience is very dependent on satisfying engine torque appropriate with the throttle position given by the driver. Unfortunately, sometimes the fulfillment of engine torque is not in line with fuel saving efforts. This requires the development of high performance and robust power train controllers. One way to potentially meet these performance requirements is to introduce a method of controlling engine torque using fuzzy gain scheduling. By using this method, the throttle opening commanded by the driver will be corrected by throttle correction signal that guarantees engine torque output will follow the desired engine torque input, and also reducing fuel consumption. In this case, spark ignition engine with automatic transmission is used to meet a good performance under this controller design. 
Multiple Moving Obstacles Avoidance of Service Robot using Stereo Vision Widodo Budiharto; Ari Santoso; Djoko Purwanto; Achmad Jazidie
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 9, No 3: December 2011
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v9i3.733

Abstract

In this paper, we propose a multiple moving obstacles avoidance using stereo vision for service robots in indoor environments. We assume that this model of service robot is used to deliver a cup to the recognized customer from the starting point to the destination.  The contribution of this research is a new method for multiple moving obstacle avoidance with Bayesian approach using stereo camera.  We have developed and introduced 3 main modules to recognize faces, to identify multiple moving obstacles and to maneuver of robot. A group of people who is walking  will be tracked as a multiple moving obstacle, and  the speed, direction, and distance of the moving obstacles is  estimated by a stereo camera in order that the robot can maneuver to avoid the collision.  To overcome the inaccuracies of vision sensor, Bayesian approach is used for estimate the absense and direction of obstacles. We present the results of the experiment of the service robot called Srikandi III which uses our proposed method and we also evaluate its performance. Experiments shown that our proposed method working well, and Bayesian approach proved increasing the estimation perform for absence and direction of moving obstacle.