Claim Missing Document
Check
Articles

Found 13 Documents
Search

Properties of Lignin from Oil Palm Empty Fruit Bunch and Its Application for Plywood Adhesive Risanto, Lucky; Hermiati, Euis; Sudiyani, Yanni
Makara Journal of Technology Vol. 18, No. 2
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Lignin from lignocellulosic biomass is a potential biopolymer for wood adhesive. The aims of this study were to characterize lignin isolated from the black liquor of oil palm empty fruit bunch fiber pretreated with steam explosion in alkaline conditions and to examine the bond quality of aqueous polymer isocyanate (API) adhesive prepared from lignin, natural rubber latex (NRL), and polyvinyl alcohol (PVA) as base polymers with isocyanate crosslinkers. Lignin was precipitated from the black liquor by adding hydrochloric acid; then the precipitate was separated by filtration, thoroughly washed with water up to pH 2 and pH 5, and dried. The isolated lignin was characterized by ultimate analysis, UV spectroscopy, FT-IR spectroscopy, and thermal analysis. Three-layer plywood samples were prepared, and the bond strengths of the plywood samples were determined in dry conditions and after cyclic boiling. The lignin isolates with different pH values did not have significantly different chemical and thermal properties. Both lignin isolates had similar C, H, and O contents, identical functional groups in the FTIR spectra, similar absorption in the UV spectra, and high decomposition temperatures. The base polymers composition that could produce API adhesive for exterior applications was NRL/PVA/lignin (4/4/2). The use of more lignin in the adhesive formulation decreased the bond strength of the plywood.
CENTRAL KALIMANTAN’S FAST GROWING SPECIES: SUITABILITY FOR PULP AND PAPER Adi, Danang Sudarwoko; Wahyuni, Ika; Risanto, Lucky; Rulliaty, Sri; Hermiati, Euis; Dwianto, Wahyu; Watanabe, Takashi
Indonesian Journal of Forestry Research Vol. 2 No. 1 (2015): Indonesian Journal of Forestry Research
Publisher : Association of Indonesian Forestry and Environment Researchers and Technicians

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59465/ijfr.2015.2.1.21-29

Abstract

Recent studies of fast growing species grown in PT. Sari Bumi Kusuma, Central Kalimantan, show that based on their fiber dimensions there are five species, namely Endospermum diadenum, Dillenia spp., Adinandra dumosa, Adiandra sp., and Nauclea junghuhnii with good potential for pulp and paper production. The fiber length of those five wood species are was more than 2,200 µm on average. This paper studies the physical properties, fiber dimensions and their chemical contents to predict the paper and pulp quality. The result shows that all of the species were classified in the medium to high density category. All species were classified into the first class quality for pulp and paper. Based on chemical contents, Dillenia sp. is the most suitable species due to its high value of holocellulose and a-cellulose, low lignin content, and its fiber length is about 3,119 µm on average. A. dumosa also has good opportunities because it had the longest fiber lengths (3,137 µm on average) and high value of holocellulose, even though it has the highest lignin content. While Nuclea junghuhnii is less suitable due to low values of holocellulose and a-cellulose.
Application of Microwave Heating in Biomass Hydrolysis and Pretreatment for Ethanol Production Hermiati, Euis; Mangunwidjaja, Djumali; Sunarti, Titi C.; Suparno, Ono; Prasetya, Bambang
Annales Bogorienses Vol. 14 No. 1 (2010): Annales Bogorienses
Publisher : BRIN

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Recently, due to depletion of fossil derived energy stock in the world, there are growing interests in utilizing biomass as sources of bioethanol. There are basically two types of biomass that are usually used or converted to ethanol, starchy and lignocellulosic biomass. The conversion of starchy and lignocellulosic materials are widely explored, however, there are still some drawbacks, such as high enzyme cost and intensive energy needed. Therefore, lower cost as well as energy and time efficient process technology in biomass conversion to ethanol is important in enhancing the use of biomass to substitute fossil fuel. Microwave heating offers some advantages to overcome these drawbacks, especially due to its quick heat transfer and its heating selectivity. In conventional heating the heat was transferred through conduction or convection process which took longer time. Thus, by using microwave, degradation of starchy and lignocellulosic biomass could be completed in shorter time than by using conventional heating method. The roles of microwave heating in the degradation of biomass, especially starchy and lignocellulosic biomass and its relation to the hydrolysis and pretreatment of that particular biomass for ethanol production are reviewed and discussed.