Claim Missing Document
Check
Articles

Found 24 Documents
Search

PENERAPAN PROGRAM DINAMIS UNTUK SIMULASI PERENCANAAN POLA TANAM Ritonga, Alven Safik
SISTEM Jurnal Ilmu Ilmu Teknik Vol 11 No 2 (2015)
Publisher : Fakultas Teknik Universitas Wisnuwardhana

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (411.932 KB)

Abstract

Keterbatasan  air pada sektor pertanian merupakan salah satu kendala untuk memajukan sektor ini. Untuk bisa mengoptimalkan sumber air yang terbatas perlu perencanaan pola tanam yang baik. Pola tanam merupakan ketetapan mengenai jadwal tanam, jenis tanam, dan luas tanam yang diberlakukan di suatu daerah irigasi. Salah satu cara untuk memaksimalkan penggunaan sumber air pada daerah irigasi adalah dengan cara optimasi. Metode optimasi yang digunakan adalah Program Dinamis, karena sesuai dengan permasalahan perencanaan pola tanam yang dipengaruhi oleh waktu tiap musim tanam selama setahun, sehingga perlu penyelesaian secara bertahap. Hasil perencanaan pola tanam dengan optimasi program dinamis berdasarkan curah hujan, kebutuhan air, dan lama tanam tanaman pangan di Kabupaten Lombok Timur, diperoleh proyeksi keuntungan produksi dibandingkan tanpa optimasi sebesar 20,49%.
Clustering Data Tweet E-Commerce Menggunakan Metode K-Means (Studi Kasus Akun Twitter Blibli Indonesia) Alven Safik Ritonga; Isnaini Muhandhis
SMATIKA JURNAL Vol 12 No 01 (2022): SMATIKA Jurnal : STIKI Informatika Jurnal
Publisher : LPPM STIKI MALANG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32664/smatika.v12i01.665

Abstract

The development of e-commerce is very rapid at this time, with the increasing number of e-commerce making competition in attracting customers and maintaining loyal customers. E-commerce players need to find a strategy for this, one way is advertising on social media, such as; Twitter, Facebook, Instagram, and so on. The purpose of this study was to obtain clustering of tweet data from Twitter using the K-Means method on tweet data from the Blibli Indonesia Twitter account to determine the type of tweet content that was retweeted by followers. The data used is follower tweet data which is pulled from the Twitter account @bliblidotcom. Testing the most optimum number of clusters by finding the largest Silhouette coefficient value. The results obtained that the optimal number of clusters is 10 clusters. From the results of this clustering, the tweet content that Blibli Indonesia consumers like the most is voucher content (cluster 4) and Opportunity series content (cluster 6). Voucher content and opporeno series content as a result of this clustering can be used by Blibli for promos to its consumers.
Implementasi Metode Inferensi Fuzzy Tsukamoto Untuk Memprediksi Curah Hujan Dasarian Di Sumenep Isnaini Muhandhis; Alven Safik Ritonga; Muhammad Harist Murdani
EDUTIC Vol 8, No 1 (2021): NOVEMBER 2021
Publisher : Universitas Trunojoyo Madura

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (418.178 KB) | DOI: 10.21107/edutic.v8i1.8907

Abstract

Peramalan curah hujan diperlukan untuk membantu memprediksi awal musim karena anomali cuaca yang sering terjadi saat ini. Pada penelitian ini kami melakukan peramalan curah hujan dasarian di Sumenep menggunakan metode inferensi fuzzy Tsukamoto. Hasil peramalan curah hujan dengan metode inferensi fuzzy Tsukamoto memiliki akurasi yang baik dengan nilai MAPE 10,64%. Peramalan dengan fuzzy Tsukamoto dapat memprediksi awal musim kemarau yaitu pada Dasarian 3 bulan April tahun 2020. Adapun prediksi awal musim hujan adalah Dasarian 2 di bulan November 2020.
TEKNIK DATA MINING UNTUK MENGKLASIFIKASIKAN DATA ULASAN DESTINASI WISATA MENGGUNAKAN REDUKSI DATA PRINCIPAL COMPONENT ANALYSIS (PCA) Alven Safik Ritonga; Isnaini Muhandhis
EDUTIC Vol 7, No 2 (2021): MEI 2021
Publisher : Universitas Trunojoyo Madura

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (427.436 KB) | DOI: 10.21107/edutic.v7i2.9247

Abstract

Peningkatan kunjungan wisatawan ke suatu destinasi wisata, dipengaruhi oleh kepuasan wisatawan waktu berkunjung. Untuk mengetahui suatu destinasi pariwisata sudah sesuai dengan yang diharapkan wisatawan, perlu dilakukan evaluasi terhadap kepuasan wisatawan. Tujuan penelitian ini adalah mendapatkan model klasifikasi yang mempunyai akurasi tinggi dalam melakukan klasifikasi ulasan kepuasan destinasi wisata dan menghasilkan alat bantu untuk pengambilan keputusan dalam pengembagan destinasi wisata. Data yang dipakai pada penelitian ini dimensinya cukup besar, hal ini nantinya membuat waktu komputasi untuk pengklasifikasian makin lama, membuat analisis tidak praktis atau tidak layak, maka reduksi dimensi data diterapkan pada penelitian ini untuk mendapatkan dimensi data yang jauh lebih kecil, namun tetap mempertahankan integritas data asli. Metode yang digunakan untuk pengklasifikasian ulasan kepuasan destinasi wisata adalah kombinasi antara metode Principal Component Analysis (PCA) sebagai metode reduksi dimensi data, dengan tiga metode data mining berikut ini; Support Vector Machine (SVM), Jaringan Saraf Tiruan (JST), dan Decision Trees. Penelitian ini menggunakan data kedua yang diambil dari UCI Machine Learning Repository. Hasil penelitian dengan mengkombinasikan PCA pada ketiga metode memperlihatkan bahwa akurasi klasifikasi lebih baik untuk beberapa metode. Dari ketiga metode yang dipakai, SVM-PCA mempunyai akurasi yang lebih baik dengan 91,50% disusul oleh metode ANN-PCA sebesar 89,46% dan metode Decision-PCA sebesar 88,78%.             
PENERAPAN METODE SUPPORT VECTOR MACHINE (SVM) DALAM KLASIFIKASI KUALITAS PENGELASAN SMAW (SHIELD METAL ARC WELDING) Alven Safik Ritonga; Endah Supeni Purwaningsih
EDUTIC Vol 5, No 1 (2018): NOVEMBER 2018
Publisher : Universitas Trunojoyo Madura

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1365.248 KB) | DOI: 10.21107/edutic.v5i1.4382

Abstract

Quality control of a product must be maintained, so that consumers feel satisfied in using the products produced. One way that can be done by the industrial world is efficiency in product quality classification. A very good classification method compared to conventional methods, is the Support Vector Machine (SVM) method. The Support Vector Machine method is a supervised learning classification method. The SVM method is an algorithm that works using nonlinear mapping to change the original training data to a higher dimension. The purpose of the research is to obtain a classification model that has high accuracy or small errors in welding quality classification. The target of the researcher is to produce a control device to maintain effective and efficient welding quality. This research is a study that uses actual data, using the second data obtained from March 2018 to May 2018. The results of testing the model using a quadratic function kernel shows the accuracy of 96.2%, and testing using test data shows the results of accuracy 98% using a quadratic function kernel.
PPM Pengusaha Kecil Lontong Dengan Menggunakan Sistem TTG di Kelurahan Kupang Krajan di Kecamatan Sawahan Surabaya siswadi siswadi siswadi; Wahyu Nugroho; Isnaini Muhandhis; Alven Safik Ritonga; Fitrah Hilmi Ghifari
Prosiding Konferensi Nasional Pengabdian Kepada Masyarakat dan Corporate Social Responsibility (PKM-CSR) Vol 5 (2022): PERAN PERGURUAN TINGGI DAN DUNIA USAHA DALAM AKSELERASI PEMULIHAN DAMPAK PANDEMI
Publisher : Asosiasi Sinergi Pengabdi dan Pemberdaya Indonesia (ASPPI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37695/pkmcsr.v5i0.1656

Abstract

The Community Empowerment Program (PPM) this time is a rice cake entrepreneur in the Banyu Urip Wetan Gang 10 area, Kupang Krajan Village, Sawahan District, Surabaya. Lontong entrepreneurs in the region formed the Lontong Entrepreneurs Association consisting of 60 groups of lontong entrepreneurs. The workers who make lontong, use a manual system to cook lontong using simple boilers, so the production capacity is relatively low. Every day, each group has to cook an average of 50 kg of rice to be processed into 620 pcs of lontong. Lontong marketing is still limited, lontong is marketed in West Surabaya and surrounding areas. To overcome these problems, we propose solutions, including: (1) designing and manufacturing lontong cooking equipment by applying Appropriate Technology (TTG) to increase rice cake production. (2) marketing management training to provide insight into expanding lontong marketing. The lontong cooking tool that will be designed consists of a large drum for boiling lontong equipped with a thermostat to measure heat. This tool uses Oil Burner fuel. Oil Burner was chosen because the heat is greater and more even, besides that it is also fuel efficient. The innovation of the lontong cooking equipment is expected to make it easier for entrepreneurs to produce rice cakes and increase their productivity. The marketing management training is expected to provide insight to entrepreneurs to expand marketing to other areas. The results of this service activity include: 1) This Lontong cooking machine can speed up the production process with good quality. 2) The existence of this 620 pcs lontong cooking machine equipped with a heat gauge and a sophisticated combustion tool can speed up partners' productivity time to 2 times faster, previously 8 hours of cooking time became only 4 hours. 3) Lontong produced is of higher quality and more perfect, 4) Marketing management training enables partners to add customers, as well as regulate how marketing works.
PENGEMBANGAN DIGITAL MARKETING PADA UMKM KAMPUNG SEMANGGI Dwi Setyo Wibisono; Rachmadian Dwi Anggara; M. Harist Murdani; Alven Safik Ritonga
Prosiding Konferensi Nasional Pengabdian Kepada Masyarakat dan Corporate Social Responsibility (PKM-CSR) Vol 5 (2022): PERAN PERGURUAN TINGGI DAN DUNIA USAHA DALAM AKSELERASI PEMULIHAN DAMPAK PANDEMI
Publisher : Asosiasi Sinergi Pengabdi dan Pemberdaya Indonesia (ASPPI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37695/pkmcsr.v5i0.1753

Abstract

Semanggi Village has several SMEs related to clover such as clover pecel, clover cake, clover clover and other small businesses. Partners in this service program are MSME entrepreneurs in the Semanggi Village area. The problems experienced by MSME entrepreneurs there include: (1) the lack of ability of target partners to marketing media, (2) public knowledge of the types of processed clover is still limited. This service program aims to develop the Semanggi Village website as a forum for various information related to Semanggi Village and as a digital media for marketing MSME products in Semanggi Village. The method used is a qualitative approach that focuses on the development of soft skills and critical thinking skills produced through assistance in using the website. Website development is expected to improve and maximize the marketing of typical products from Semanggi Village and hone critical thinking for target partners in Semanggi Hamlet, RW.03, Sememi Village. The results of this service program include: (1) the creation of the Semanggi Village website as a forum for information and also online marketing; (2) RW03 youth groups are able to understand and master how to manage and develop websites that have been created.
Penerapan Text Mining dan Metode DBSCAN untuk Clustering Data Tweet E-Commerce Alven Safik Ritonga; Isnaini Muhandhis
Prosiding Seminar Nasional Unimus Vol 4 (2021): Inovasi Riset dan Pengabdian Masyarakat Post Pandemi Covid-19 Menuju Indonesia Tangguh
Publisher : Universitas Muhammadiyah Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Perkembangan teknologi dan informasi pada saat ini membuat pelaku usaha atau e-commerce beralihberiklan melalui website, sosial media; Facebook, Instagram, Twitter. Dengan beriklan di sosial mediamisalnya di Twitter, pelaku usaha harus jeli untuk memberikan tweet yang sharable dimana para followerakan secara sukarela membagikan konten seperti foto, video, diskon atau kuis dan pertanyaan yang dapatmendongkrak penjualan. Tujuan penelitian ini adalah membantu pelaku usaha atau e-commerce untukmengetahui jenis konten tweet yang banyak dilakukan retweet oleh followers, sehingga konten tersebut sebagaisarana untuk melakukan promosi kepada pengguna Twitter. Untuk  mendapatkan konten tersebutdilakukan clustering data tweet dari Twitter dengan menggunakan Text Mining dan metode Density-BasedSpatial Clustering of Applications with Noise (DBSCAN). Metode ini membentuk cluster dari data-datayang saling berdekatan, sedangkan data yang saling berjauhan tidak akan menjadi anggota cluster.Penentuan jumlah cluster terbaik dilakukan dengan menggunakan metode Silhouette coefficient. Penelitianini menggunakan data teks yang diambil dari akun Twitter @bliblidotcom. Hasil penelitian inimendapatkan jumlah clustering yang terbaik berdasarkan Silhouette coefficient adalah lima cluster. Tweetyang retweet terbanyak adalah tweet opporeno di cluster 4 dan 5. Menggunakan hasil cluster tersebut BlibliIndonesia terbantu untuk melakukan promo apa yang paling disuka oleh pelanggannya.Kata Kunci : Text Mining, Twitter, DBSCAN, E-commerce, Clustering
Sistem Pendukung Keputusan Rekomendasi Pemilihan Smartphone Menggunakan Metode Simple Additive Weighting (SAW) Syahputra, Adhe Rifqi; Ritonga, Alven Safik
Journal of System Engineering and Technological Innovation Vol 2 No 02 (2023): Oktober 2023
Publisher : Faculty of Engineering, Wijaya Putra University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.38156/jisti.v2i02.49

Abstract

Smartphones are the latest technology from ordinary cellphones which are in great demand because with current technological advances many people need smartphones for their daily needs such as work, education and others. Many buyers are confused about which smartphone to buy because of the many brands and types of smartphones being marketed. This research aims to produce recommendations as well as Smartphones to buyers. Decision Support System (SPK) uses the Simple Additive Weighting (SAW) method. This Smartphone Selection Decision Support System is implemented in the form of a web. In this system, users can input smartphone criteria that suit their needs with the Smartphone Recommendation Support System making it easier for buyers to buy smartphones according to their needs.
Rancang Bangun Sistem Manajemen Gudang di PT XYZ Muhandhis, Isnaini; Harianto Putra, Ahan Budiarta; Wibisono, Dwi Setyo; Ritonga, Alven Safik
Journal of System Engineering and Technological Innovation Vol 2 No 02 (2023): Oktober 2023
Publisher : Faculty of Engineering, Wijaya Putra University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.38156/jisti.v2i02.58

Abstract

The warehouse is one of the most important parts of a company. Ineffective warehousing processes can disrupt warehouse operations. Recording warehouse transactions that are done manually will require checking one by one on the hardcopy form that has been stored. Therefore, this internship program aims to improve the performance of warehousing operations at PT XYZ. The method used in the analysis is data collection and application system design using the prototype method. The data is taken based on the results of interviews and observations in the warehouse. This activity creates a web-based warehouse management system application to help control incoming and outgoing inventory. The system built makes it easy for administrators to see the number of items made for each event. The results of black box testing show that the application has 100% functionality. The test results illustrate that the application functions properly according to user needs and has been accepted by PT XYZ