Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Indonesian Journal of Applied Informatics

Penerapan Metode Support Vector Machine Dalam Klasifikasi Bunga Iris Anita Desiani; Irmeilyana Irmeilyana; Herlina Hanum; Yuli Andriani; Sri Indra Maiyanti; Clarita Margo Uteh; Ira Rayyani
IJAI (Indonesian Journal of Applied Informatics) Vol 7, No 1 (2022)
Publisher : Universitas Sebelas Maret

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20961/ijai.v7i1.61486

Abstract

Abstrak Data mining adalah proses melatih komputer untuk mengenali suatu pola menggunakan teknik statistika mapun matematika. Salah satu teknik data mining yang sering digunakan adalah klasifikasi, yakni mengelompokkan data ke dalam suatu label menggunakan atribut. Pada klasifikasi, Support Vector Machine (SVM) merupakan salah satu metode yang paling banyak digunakan. Penelitian ini akan memanfaatkan metode SVM dalam melakukan klasifikasi bunga Iris. Data yang diteliti menggunakan sebanyak 150 data dengan menggunakan dua metode data latih, yakni percentage split dan k-fold cross validation. Data diolah melalui tahap pre-processing, lalu diklasifikasi menggunakan metode SVM melalui 2 metode data latih, percentage split sebesar 80% dan k-fold corss validation dengan k=10, perhitungan hasil prediksi menggunakan confusion matrix. Pada metode percentage split diperoleh nilai akurasi sebesar 96,7%, presisi 97,6%, recall sebesar 95,3%, dan F1-score sebesar 96,3%. Pada metode k-fold cross validation diperoleh nilai akurasi sebesar 92,6%, presisi 92,6%, recall sebesar 92,6%, dan F1-score sebesar 92,3%. Dengan demikian metode SVM menggunakan kernel polynomial dengan metode data latih percentage split dapat diimplementasikan ke dalam sistem klasifikasi bunga Iris.AbstractData mining is the process of training a computer to recognize a pattern using statistical and mathematical techniques. One of the data mining techniques that are often used is classification, which is to group data into the label using attributes. In classification, the Support Vector Machine (SVM) is one of the most widely used methods. This research will utilize the SVM method in classifying Iris flowers. The data studied used 150 data using two training data methods, percentage split and k-fold cross validation. The data is processed through the pre-processing stage, then classified using the SVM method through 2 training data methods, percentage split of 80% and k-fold cross validation with k = 10, and calculation of prediction results using a confusion matrix. In the percentage split method, the accuracy is 96.7%, precision is 97.6%, recall is 95.3%, and F1-score is 96.3%. In the k-fold cross validation method, the accuracy is 92.6%, precision is 92.6%, recall is 92.6%, and F1-score is 92.3%. So that the SVM method using a polynomial kernel with the percentage split training data method can be implemented into the iris classification system.
Co-Authors Affandi, Azhar Kholiq Agus lukowi Ajeng Islamia Putri albar Pratama Ali Amran Ali Amran Anasari Anasari Andini, T Anita Desiani Annisa Kartikasari ANNISA NABILA Arhami, Muhammad Arum Setiawan Arum Setiawan Bambang Suprihatin Bella Arisha Berry Gultom Cahyani, Kariah Ayu Cahyono, Endro Setyo Cahyono Candra, Stefanie Fortunita Clarita Margo Uteh Danny Matthew Saputra Danny Matthew Saputra Derry Alamsyah Des Alwine Zayanti, Des Alwine Desty Rodiah Dwipurwani, O Endang Sri Kresnawati Enyta Yuniar Fathona Nur Muzayyadah Fauzi Yusuf Syarifuddin Ferani Eva Zulvia fildzah daniela, nyayu audy Fitra Nur Azizah Fitri Maya Puspita Hadi Tanuji Herlina Hanum Hermansyah Hermansyah Iffah Husniah Indah Amalia, Indah Indah Verdya Alvionita Indrawati Indrawati Indrawati Indri Andarini Indrike Febriyanti Ira Rayyani Juniwati Juniwati Lady Yulita Yulita Laila Hanum Lubis, Andika Cristian M Kahfi Aldi Kurnia Makhalli, Siddiq Maya Meilensa Maya Meilensa Meiza Putri Lestari Mirza Denia Putri Muhammad Akbar Mukhlizar Nirwan Samsuri Mukhlizar Nirwan Samsuri Mutiara, Siti Rahma Narti Narti, Narti Ngudiantoro . Ngudiantoro Ngudiantoro Ngudiantoro Ngudiantoro Ning Eliyati NUNI GOFAR Nur Avisa Calista Oky Sanjaya Putra B. J. Bangun Putra BJ Bangun Putra BJ Bangun Putri, Rizki Eka Putri, Wine Zea Rahayu Tamy Agustin Ramadhan, Raihan Ramayanti, Indri Rana Sania Rana Sania Robinson Sitepu Sasongko, Muhammad Aditya Savera, Mutiara Siddiq Makhalli Simamora, Valentino Sri Indra Maiyanti Sri Indra Maiyanti Sri Indra Maiyanti Sugandi Yahdin Suratama, Bintang Syarifuddin, Fauzi Yusuf Yadi Utama Yuanita Windusari Yuli Andriani Z, Des Alwine