Claim Missing Document
Check
Articles

Found 4 Documents
Search
Journal : Metalurgi

THE ROLE OF N-DOPING TO THE PORE CHARACTERISTICS OF ACTIVATED CARBON FROM VETIVER ROOT DISTILLATION WASTE Yohana Fransiska Ferawati; Ratna Frida Susanti
Metalurgi Vol 36, No 2 (2021): Metalurgi Vol. 36 No. 2 Agustus 2021
Publisher : National Research and Innovation Agency (BRIN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (659.746 KB) | DOI: 10.14203/metalurgi.v36i2.595

Abstract

This work studied the effect of nitrogen functional group modification on activated carbon synthesized from vetiver root waste on pores development. Synthesis of activated carbon was carried out by hydrothermal carbonization of vetiver root waste at a temperature of 225 ⁰C for 18 hours followed by chemical activation using K2FeO4as activated agent in a furnace at temperature of 800 ⁰C for 2 hours with nitrogen atmosphere flowed at a rate of 100 mL/minute. Urea was used as a nitrogen source. The variation of urea concentration was 1:0 (AC0–800), 1:3 (AC3–800) and 1:5 (AC5–800). The results showed that these activated carbons have mesoporous characteristics with the largest Brunauer Emmett Teller (SBET) surface area of 552.90 m2g-1 and average pore width 3,43 nm. The presence of nitrogen functional group was observed in the Fourier Transform Infrared Spectrometer analysis. Synthesis of activated carbon from vetiver root waste with an addition of urea is the newest method to produce mesoporous activated carbon for electrode and  support catalyst purposes.
SYNTHESIS AND CHARACTERIZATION OF NICKEL HYDROXIDE FROM EXTRACTION SOLUTION OF SPENT CATALYST Kevin Cleary Wanta; Felisha Hapsari Tanujaya; Federick Dwi Putra; Ratna Frida Susanti; Gelar Panji Gemilar; Widi Astuti; Himawan Tri Bayu Murti Petrus
Metalurgi Vol 35, No 3 (2020): Metalurgi Vol. 35 No. 3 Desember2020
Publisher : National Research and Innovation Agency (BRIN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (706.089 KB) | DOI: 10.14203/metalurgi.v35i3.572

Abstract

Nickel is an essential metal element and is applied in various sectors. One of the useful nickel–based derivatives products is nickel hydroxide [Ni(OH)2]. This compound is widely applied as raw material for electrodes of rechargeable batteries, capacitors, electrolyzers, and catalysts. This study focuses on the synthesis of Ni(OH)2 using the hydroxide precipitation method. A solution from the extraction process of spent catalysts was used as a precursor solution. After the precursor solution was obtained, the precipitation process was carried out at pH 10, where the operating temperature was varied at 30–60oC. NaOH, KOH, and MgO solutions were used as precipitating agents. The experimental results show that the Ni(OH)2 compounds were produced optimally at low temperatures, 30oC. It could be indicated from the lowest concentration of Ni2+ ions in the liquid phase that reached that temperature. The three precipitation agents also gave good results in the precipitation of Ni2+ ions, where almost all of the Ni2+ ions were precipitated from the liquid phase. The precipitated products were characterized using SEM, XRD, and XRF. The analysis results showed that the product was agglomerated and formless. The purity of the precipitates formed were 24.1 and 29% for the precipitating agents MgO and NaOH, respectively.
INCREASING OF METAL RECOVERY IN LEACHING PROCESS OF SPENT CATALYST AT LOW TEMPERATURE: THE ADDITION OF HYDROGEN PEROXIDE AND SODIUM CHLORIDE Kevin Cleary Wanta; Edward Yonathan Natapraja; Ratna Frida Susanti; Gelar Panji Gemilar; Widi Astuti; Himawan Tri Bayu Murti Petrus
Metalurgi Vol 36, No 2 (2021): Metalurgi Vol. 36 No. 2 Agustus 2021
Publisher : National Research and Innovation Agency (BRIN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (689.602 KB) | DOI: 10.14203/metalurgi.v36i2.591

Abstract

One of the factors that affect the leaching process of a mineral source is the mineral characteristics of the raw materials. Not all mineral phases can be leached directly and completely. Thus, some minerals require special treatment so that the leaching process can take place optimally. This study will focus on studying the effect of additive compounds addition, i.e. hydrogen peroxide and sodium chloride, in the leaching process of spent catalyst using a sulfuric acid solution. The leaching process was carried out at a concentration of 1 M sulfuric acid solution for 240 minutes at room temperature. The hydrogen peroxide concentration was varied at 0–9%v/v, while the sodium chloride concentration was varied at 0–0.8 mol/L. The experimental results showed that the two additive compounds were able to increase nickel recovery significantly. The highest nickel recovery of 95.08% was achieved when hydrogen peroxide was used at 9%v/v. The nickel recovery is 3.5 times higher than without the addition of hydrogen peroxide. Meanwhile, sodium chloride concentration of 0.8 mol/L was able to provide the highest nickel recovery of 50.38% or an increase of 1.9 times compared to without the addition of sodium chloride.
SYNTHESIS AND CHARACTERISTIC OF NANOSILICA FROM GEOTHERMAL SLUDGE: EFFECT OF SURFACTANT Adiatama, Aufa Rai; Susanti, Ratna Frida; Astuti, Widi; Petrus, Himawan Tri Bayu Murti; Wanta, Kevin Cleary
Metalurgi Vol 37, No 2 (2022): Metalurgi Vol. 37 No. 2 Agustus 2022
Publisher : National Research and Innovation Agency (BRIN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1467.999 KB) | DOI: 10.14203/metalurgi.v37i2.637

Abstract

In the synthesis of nanoparticles, the phenomenon of agglomeration is an undesirable condition because the particles formed can be larger. The use of surfactants can prevent the occurrence of this phenomenon. In this study, the use of surfactants was studied in the synthesis of nanosilica from geothermal sludge. The method applied in the synthesis of nanosilica is the sol-gel method. A 1 M sodium hydroxide (NaOH) solution was used to prepare the sol phase, while the gel phase was prepared at pH 5 using a 1.5 M hydrochloric acid (HCl) solution. The surfactants used were alkyl benzene sulfonate (ABS), cetyltrimethylammonium bromide (CTAB), sodium dodecyl sulfate (SDS), and polyvinylpyrrolidone (PVP). The surfactant added to the precursor solution was at the critical micelle concentration (CMC), where the CMC values for each surfactant were 0.15, 0.05, 0.50, and 1.00 wt% for ABS, CTAB, SDS, and PVP, respectively. The experimental results showed that the synthesis of nanosilica without surfactant could produce the product with a purity of 98.03%. Even though the purity is already high, the resulting product experiences agglomeration and surfactants were needed to minimize the occurrence of agglomeration in the product. The surfactant that gives the best product quality is PVP, where the particle size is in the range of 2.01–3.65 nm. However, the product produced with this PVP has a low purity, 56.67%. It is because the sodium chloride (NaCl) is trapped in the surfactant template.