p-Index From 2020 - 2025
6.846
P-Index
This Author published in this journals
All Journal TELKOMNIKA (Telecommunication Computing Electronics and Control) Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) Jurnal Informatika dan Teknik Elektro Terapan POSITIF KLIK (Kumpulan jurnaL Ilmu Komputer) (e-Journal) JURNAL MEDIA INFORMATIKA BUDIDARMA JTERA (Jurnal Teknologi Rekayasa) JITK (Jurnal Ilmu Pengetahuan dan Komputer) JOURNAL OF APPLIED INFORMATICS AND COMPUTING JUTEI (Jurnal Terapan Teknologi Informasi) Journal Information System Development JUTIM (Jurnal Teknik Informatika Musirawas) ALGORITMA : JURNAL ILMU KOMPUTER DAN INFORMATIKA Jurnal Inovasi Hasil Pengabdian Masyarakat (JIPEMAS) Jurnal Ilmiah Media Sisfo Journal of Information Technology and Computer Engineering The IJICS (International Journal of Informatics and Computer Science) JURIKOM (Jurnal Riset Komputer) JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika) Jurnal Informatika Global Jurnal Teknologi Terpadu Antivirus : Jurnal Ilmiah Teknik Informatika Jurnal Tekno Kompak JIKA (Jurnal Informatika) Journal of Informatics, Information System, Software Engineering and Applications (INISTA) Journal of Applied Data Sciences Journal of Applied Computer Science and Technology (JACOST) Jurnal Ilmiah Teknologi Informasi dan Robotika Journal of Dinda : Data Science, Information Technology, and Data Analytics Konstelasi: Konvergensi Teknologi dan Sistem Informasi IJCOSIN : Indonesian Journal of Community Service and Innovation Jurnal Sistem Informasi dan Bisnis Cerdas Jurnal Karya Abdi Masyarakat JUPADAI : Jurnal Pengabdian Kepada Masyarakat SENAPAS Inovasi Jurnal Pengabdian Masyarakat (IJPM) SmartComp Jurnal Informatika: Jurnal Pengembangan IT Pengabdian Kepada Masyarakat Bidang Teknologi dan Sistem Informasi Journal of Software Engineering and Multimedia (JASMED)
Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Journal of Dinda : Data Science, Information Technology, and Data Analytics

Implementasi Deep Learning Untuk Klasifikasi Citra Undertone Menggunakan Algoritma Convolutional Neural Network Rizka Fayyadhila; Apri Junaidi; Novian Adi Prasetyo
Indonesian Journal of Data Science, IoT, Machine Learning and Informatics Vol 1 No 2 (2021): August
Publisher : Research Group of Data Engineering, Faculty of Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (448.788 KB) | DOI: 10.20895/dinda.v1i2.366

Abstract

The beauty of Indonesian women is distinguished by skin color, facial structure, hair color and body posture. For women today trying to look beautiful is a must. The way to make yourself look beautiful can be tricked by using make-up. But it's not that easy to use make-up because the type of make-up is differentiated based on the basic skin color, this is the problem for women in using make-up. Undertone is the basic color of the skin, there are three types of undertones, namely warm, cool and neutral. By knowing the type of undertone, it will make it easier for women to use make-up, namely to determine the appropriate shade based on the type of undertone. For this reason, a modeling of undertone image classification was made using the Convolutional Neural Network algorithm. This algorithm is claimed to be the best algorithm for solving object recognition and detection problems. The wrist vein color image dataset is required. The dataset used is 30 data per class, then preprocessing is carried out by homogenizing the image size to 64x64 pixels, then augmentation is carried out on each image by rotating and zooming. At this stage, the dataset will be divided into 3000 images which are divided into 80% training data and 20% testing data. Then it is processed through the convolution and pooling process at the feature learning stage, then the fully connected layer and classification stage where the feature learning results will be used for the classification process based on subclasses. Produces accuracy and training model values ​​reaching 98% with a loss value of 0.0214 and for accuracy from data validation it reaches 99% with a loss value of 0.0239 with model testing results of 99.5%.
Co-Authors Abednego Dwi Septiadi Adhe Nuzula Ramadlana Aditya Wijayanto Aghnia NurJumala Alika, Shintia Dwi Alon Jala Tirta Segara Amalia Beladinna Arifa Amanat Dirgantara Angga Widwan Krismanto Apri Junaidi Arief Rais Bahtiar Ariq Cahya Wardhana Atika Ratna Dewi Budy Putri, Raden Neomy Lusie Ratna Deseina Cepi Ramdani Condro Kartiko Dany Candra Febrianto Dedy Agung Prabowo Diandra Chika Fransisca Dimas Fanny Hebrasianto Permadi Eka Tripustikasari Elfrida Ratnawati Fadlan Sani Mubarok Fahrezi, Raihan Ahmad Febriani, Atik Firman Galuh Sembodo Garichwan Fathurrahman Arafat GITA FADILA FITRIANA Hari Widi Utomo Hary Indra Permana Hulqi, Filfimo Yulfiz Ahsanul Iqsyahiro Kresna A Irwan Susanto Ismi Aziz, Ahun Jinan Ghinia Khansa Johanes Christianto Tiku Kukuh Primadito Raharjo Larasae, Dewi Maryona Septiara Matheus Alvian Wikanargo Meliana Dewi Morleedia Adi Yahya Muhamad Awiet Wiedanto Prasetyo Muhamad Azrino Gustalika Nesya Dwinanda Sri Fadila Nurhidayat, Syahliana Iqbal Nurul Mustabirin Panjiwijanarko, Jiddan Ilham Pradana Ananda Raharja Pramudya, Reza Iqbal Rahayu, Ratna Budi Sri Rezi Iwardani Saputri Riadi Windika Rifki Adhitama, Rifki Riri Irma Suryani Rizka Fayyadhila Rr. Setyawati Sambath, Khoem Sang Dara Parameswari Sidiq, Muhammad Fajar Siti Khomsah, Siti Suci, Ika Rahmawati Suyoto Suyoto Tasya Anggar Ari Krisnandi Tenia Wahyuningrum Testandy, Zaky Hanif Thenata, Angelina P. Theo Felix Harianto Purba Trihastuti Yuniati Ummi Athiyah Utami, Annisaa Vico Meylana Eka Putra Wahyu Andi Saputra Wibowo, Fahrudin Mukti Wikanargo, Matheus Alvian Windika, Riadi Wiwit Farianto Yudha Saintika Yuliansyah, Joewandewa