Claim Missing Document
Check
Articles

Found 33 Documents
Search

Classification of Students' Academic Performance Using Neural Network and C4.5 Model Sulika Sulika; Ririen Kusumawati; Yunifa Miftachul Arif
International Journal of Advances in Data and Information Systems Vol. 5 No. 1 (2024): April 2024 - International Journal of Advances in Data and Information Systems
Publisher : Indonesian Scientific Journal

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59395/ijadis.v5i1.1311

Abstract

ducation involves deliberately creating an environment and learning process to empower students to fully utilize their academic and non-academic potential. It encompasses fostering spiritual qualities, religious understanding, self-discipline, cognitive abilities, and skills necessary for personal, societal, national, and state development. Madrasah Aliyah, in particular, emphasizes preparing participants for higher studies in areas of their interest, thereby showcasing their academic prowess. The evaluation of educational models like Neural Networks is crucial for ensuring their effectiveness in problem-solving. This involves testing and assessing the performance of the Neural Network model to ensure its accuracy and reliability. Similarly, the C4.5 method, based on condition data mining, is utilized to measure classification performance by assessing accuracy, precision, and recall. Research findings indicate that the neural network algorithm is more adept at accurately classifying students' academic abilities compared to the C4.5 algorithm. With an accuracy of 92.6% for the neural network algorithm and 80.6% for the C4.5 algorithm, it is evident that the former is more precise in determining the classification of students' academic abilities. This highlights the suitability of the neural network approach for classifying academic abilities in Madrasah Aliyah. Furthermore, the insights gained from this classification process can be extrapolated to benefit other madrasas.
Recommendation System for Selecting Web Programming Learning Materials for Vocational High School Students using Multi-criteria Recommendation Systems Lia Wahyuliningtyas; Yunifa Mittachul Arif; Ririen Kusumawati
International Journal of Advances in Data and Information Systems Vol. 5 No. 1 (2024): April 2024 - International Journal of Advances in Data and Information Systems
Publisher : Indonesian Scientific Journal

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59395/ijadis.v5i1.1317

Abstract

In the independent curriculum, the learning that is carried out focuses on developing character, student competence and honing interests, talents. So the amount of learning material given to students does not have to be complete or less. Apart from that, the independent curriculum no longer burdens students with achieving a minimum score because assessments no longer use Minimum Completeness Criteria (KKM) scores. This makes it difficult for teachers to determine whether the material that has been explained can be understood because grades are not a benchmark for a student's success. In fact, if the teacher does not know a student's understanding, the teacher will have difficulty continuing to the next material. Implementation of the Multi-Criteria Recommender System (MCRS) can make it easier for teachers to predict whether students can progress to the next material and recommend which modules are suitable for these students. The recommendation system that will be built is in the form of web-based learning media so that students can be more interested and can help teachers improve learning outcomes. The method used is collaborative filtering by comparing adjusted cosine similarity, cosine based similarity and spearman rank order correlation. Based on the implementation of MCRS using the collaborative filtering method, it shows that the results of the recommendation system have a good impact on the teaching and learning process. Based on the 3 algorithms implemented, the best prediction result is cosine based similarity because the MAE value obtained is the lowest, namely 1.19 and the accuracy value is 76%.
Utilizing the game design factor questionnaire to develop engaging games for adaptive learning in the serious educational game: the Ma'had Sari, Nur Fitriyah Ayu Tunjung; Kusumawati, Ririen; Karami, Ahmad Fahmi; A, Miftahul Hikmah Putri Samudera
OPSI Vol 17, No 1 (2024): ISSN 1693-2102
Publisher : Jurusan Teknik Industri Fakultas Teknologi Industri UPN "Veteran" Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31315/opsi.v17i1.11322

Abstract

This study explores the unique mandatory residence, Ma'had Sunan Ampel Al Alyi (MSAA), at the State Islamic University (UIN) Maulana Malik Ibrahim Malang, aiming to develop Quranic reading competence in new students. The varying educational backgrounds of admitted students lead to differences in their Quranic reading capabilities, highlighting the need for adaptive learning. In response to this diversity, adaptive learning using artificial intelligence is employed, implemented through the serious education game "The Ma'had." Survey results from expert individuals using a Game Design Factor Questionnaire reveal the game's substantial potential. The results show high agreement (100%) on clear goals, engaging gameplay, and a sense of freedom, with 67% strongly agreeing on improved understanding. Challenges are motivating, and the game successfully sparks curiosity. "The Ma’had" Game proves effective, but further research is recommended to explore variations in player engagement and compare results with expert test subjects, employing alternative quantitative testing methods for a comprehensive analysis.
EVALUASI CLUSTERING K-MEANS DAN K-MEDOID PADA PERSEBARAN COVID-19 DI INDONESIA DENGAN METODE DAVIES-BOULDIN INDEX (DBI) Fathurrahman, Fathurrahman; Harini, Sri; Kusumawati, Ririen
Jurnal Mnemonic Vol 6 No 2 (2023): Mnemonic Vol. 6 No. 2
Publisher : Teknik Informatika, Institut Teknologi Nasional malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36040/mnemonic.v6i2.6642

Abstract

Tingginya persebaran Covid-19 di Indonesia, dan persebaran di tiap-tiap daerah yang berbeda-beda, menjadikan perlu adanya pengelompokan daerah dengan masing-masing tingkat penyebarannya, untuk mengetahui kemiripan karakteristik atau kriteria dari setiap daerah dengan tingkat penyebaran Covid-19 yang akan terkumpul dalam suatu cluster tertentu. Penelitian ini menggunakan komparasi analisis cluster menggunakan K-Means dan K-Medoid untuk menganalisis perseberan virus Covid-19 di indonesia. Analisis komparasi kedua algoritma dibuktikan dengan adanya nilai davies bouldin index (DBI) sebagai parameter evaluasi menggunakan Bahasa Pemrograman Python Version 3 yang dijalankan pada tools Jupyter Notebook. Langkah penelitian dimulai dari import library atau modul yang digunakan dalam berbagai tahapan dalam penelitian ini. Tahapan yang dilakukan antara lain melakukan pre-processing berupa proses binning data hingga normalisasi data. Selanjutnya, menampilkan visualisasi data sebaran Covid-19. Kemudian, melakukan modeling Algoritma K-Means dan K-Medoids. Hingga diakhiri dengan langkah terakhir berupa evaluasi menggunakan Davies-Bouldin Index (DBI). Setelah dilakukan evaluasi DBI, K-Means mendapatkan nilai 0.9762331449809145, sedangkan K-Medoids mendapatkan nilai 0.9809235412405508. Karena K-Means memiliki nilai DBI yang lebih rendah dibandingkan K-medoids, maka dapat dikatakan K-Means menghasilkan klasterisasi yang lebih baik dalam klasterisasi data sebaran Covid-19 di Indonesia.
SISTEM REKOMENDASI MATERI PEMROGRAMAN WEB PADA MEDIA PEMBELAJARAN BERBASIS WEB MENGGUNAKAN MULTI-CRITERIA RECOMMENDER SYSTEM Wahyuliningtyas, Lia; Miftachul Arif, Yunifa; Kusumawati, Ririen
Jurnal Mnemonic Vol 7 No 1 (2024): Mnemonic Vol. 7 No. 1
Publisher : Teknik Informatika, Institut Teknologi Nasional malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36040/mnemonic.v7i1.8128

Abstract

Dalam kurikulum merdeka, pembelajaran yang dilakukan fokus terhadap pengembangan karakter, kompetensi siswa dan mengasah minat bakat. Sehingga jumlah materi pembelajaran yang diberikan kepada siswa tidak harus tuntas atau lebih sedikit. Selain itu pada kurikulum merdeka tidak lagi membebani siswa dengan ketercapaian skor minimal karena penilaian tidak lagi menggunakan nilai Kriteria Ketuntasan Minimal (KKM). Hal tersebut menyebabkan guru kesulitan menentukan apakah materi yang telah dijelaskan sudah dapat dipahami karena nilai tidak menjadi patokan dalam keberhasilan seorang siswa. Padahal apabila guru tidak mengetahui pemahaman seoarang siswa, guru akan kesulitan untuk lanjut pada materi selanjutnya. Implementasi Multi-Criteria Recommender System (MCRS) dapat memberikan kemudahan guru untuk dapat memprediksi apakah siswa dapat lanjut ke materi selanjutnya dan merekomendasikan modul mana yang cocok untuk siswa tersebut. Sistem rekomendasi yang akan dibangun berupa media pembelajaran berbasis web agar siswa dapat lebih tertarik dan dapat membantu guru dalam meningkatkan hasil belajar. Metode yang digunakan adalah collaborative filtering dengan membandingkan antara adjusted cosine similarity, cosine based similarity dan spearman rank order correlation. Berdasarkan implementasi MCRS menggunakan metode collaborative filtering menunjukkan bahwa hasil sistem rekomendasi tersebut memberikan dampak yang baik untuk proses belajar mengajar. Berdasarkan 3 algoritma yang diimplementasikan bahwa hasil prediksi yang paling baik adalah cosine based similarity karena nilai MAE yang didapatkan paling rendah yaitu sebesar 1,19 dan nilai akurasi sebesar 76%.
Comparison of Different Classification Techniques to Predict Student Graduation Subarkah, Aan Fuad; Kusumawati, Ririen; Imamudin, M
MATICS: Jurnal Ilmu Komputer dan Teknologi Informasi (Journal of Computer Science and Information Technology) Vol 15, No 2 (2023): MATICS
Publisher : Department of Informatics Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18860/mat.v15i2.24095

Abstract

Every year, the number of students accepted at the Maulana Malik Ibrahim State Islamic University of Malang continues to increase. Still, not all students can graduate on time according to the specified study period, resulting in a buildup of students who have not graduated according to their graduation period. One of the aspects evaluated in the Study Program accreditation process is the student graduation rate. Apart from that, for each semester, Study Programs are also required to report educational data to DIKTI, and student graduation is one of the factors considered in the report. There is an imbalance between the number of students graduating each year and the number of new students accepted. To overcome this problem, it is necessary to predict student graduation to determine whether they will graduate on time. In science and data analysis, predictions are often used to make predictions based on existing data and information. Classification models in predicting student graduation include the Nave Bayes method, Support Vector Machine SVM, and Random Forest, as well as the level of accuracy of these three methods. From the results of experiments and model evaluations carried out, with data from 458 Informatics Engineering Study Program students with details of 366 training data and 92 testing data, it was obtained that the SVM model had the highest accuracy, reaching around 87% and Random Forest also had good accuracy, around 82%. At the same time, the Naïve Bayes model has lower accuracy, around 76%.
IMPLEMENTASI METODE ALGORITMA COLLABORATIVE FILTERING DAN K-NEAREST NEIGHBOR PADA SISTEM REKOMENDASI E-COMMERCE Dita Aisha; Ririen Kusumawati
Jurnal ilmiah Sistem Informasi dan Ilmu Komputer Vol. 2 No. 3 (2022): November : Jurnal ilmiah Sistem Informasi dan Ilmu Komputer
Publisher : Lembaga Pengembangan Kinerja Dosen

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55606/juisik.v2i3.314

Abstract

E-Commerce termasuk dari salah satu alternative pilihan bagi sebuah toko yang digunakan sebagai media informasi guna memudahkan adanya interaksi antar penjual dan konsumen. Banyaknya sebuah produk keberagaman produk dalam sebuah e-commerce, sering kali membuat konsumen merasa kebingungan memilih produk yang dibutuhkannya. Hal tersebut mengakibatkan proses transaksi ya. ng beru. lang-ulang sehingga membu.tuhkan waktu yang cukup lama. Konsumen sering kali juga kebingungan dalam mencari info rating dari produk yang ingin dibeli oleh user. Pada Penelitian ini dibuat system rekomendasi E-Commerce yang mampu memberi rekomendasi secara otomatis kepada user. Metode yang digunakan adalah metode Collaborative Filtering dengan menggunakan Addjusted Cossine Similarity dan K-Nearest Neighbor sebagai alat atau metode perhitungan kemiripan antar user, kemudian algoritma weigted sum sebagai perhitungan predikasinya. Collaborative Filtering digunakan untuk membantu user dalam memilih item yang sesuai berdasarkan rating yang diberikan user lain. Hasil waktu eksekusi yang dibutuhkan dipengaruhi oleh jumlah item dan ranting, sistem ini telah diuji menggunakan metode blackbox.
Determining recipients of uninhabitable house rehabilitation program assistance using the classification method Silfiyah, Chilmiatus; Kusumawati, Ririen; Crysdian, Cahyo
Jurnal Mantik Vol. 8 No. 1 (2024): May: Manajemen, Teknologi Informatika dan Komunikasi (Mantik)
Publisher : Institute of Computer Science (IOCS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35335/mantik.v8i1.5184

Abstract

The data used in this study amounted to 15182 datasets consisting of 14 variables. Existing variables are divided into basic variables and additional variables. The basic variables consist of 5 variables namely Home ownership, Roof type, Wall type, Floor type, Defecation facilities. While the additional variables consist of 9 variables, namely employment, having money / livestock / jewelry deposits and others, welfare deciles, education, recipients of non-cash food assistance, recipients of productive assistance for micro enterprises, recipients of cash social assistance, recipients of family hope programs, and recipients of basic necessities. Using the naïve bayes algorithm classification method, the values of accuracy, precision, recall, and f-measure are 67.61%, 67.97%, 93.71% and 78.79%. The addition of additional variables to the basic variables resulted in an accuracy of 68.29% in the additional variables of education. This shows that by adding additional variables, the accuracy results are higher than using only basic variables, so that this study can be used as a recommendation in decision making on the implementation of determining the beneficiaries of the rehabilitation program for uninhabitable houses
Analysis of Public Sentiment Towards The TikTok Application Using The Naive Bayes Algorithm and Support Vector Machine Hidayah, Ika Arofatul Hidayah; Ririen Kusumawati; Zainal Abidin; M. Imamuddin
Journal of Computer Networks, Architecture and High Performance Computing Vol. 6 No. 2 (2024): Articles Research Volume 6 Issue 2, April 2024
Publisher : Information Technology and Science (ITScience)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47709/cnahpc.v6i2.3990

Abstract

In the current digital era, social media applications such as TikTok have become an important aspect of people's lives. TikTok allows users to create and share short videos, making it a global phenomenon with millions of active users. However, this application has also been the subject of various responses and opinions from the public. This research aims to classify public sentiment towards the TikTok application based on comments on Playstore using the Naïve Bayes algorithm and Support Vector Machine (SVM). This research method involves collecting comment data from Playstore using scraping techniques, resulting in 5,000 review data. Data pre-processing stages include case folding, tokenization, normalization, stopword removal, stemming, and data labeling using a lexicon. The data that has been processed is then weighted using Term Frequency - Inverse Document Frequency (TF-IDF) before being classified using the Naïve Bayes and SVM algorithms. Algorithm performance evaluation is carried out using the Confusion Matrix to measure accuracy, precision and recall. The research results show that the SVM algorithm has higher accuracy (84%) compared to Naïve Bayes (79%). SVM also shows better precision and recall values in classifying positive and negative sentiment from user reviews. From the results of the tests that have been carried out, the SVM algorithm is more effective than Naïve Bayes in sentiment analysis of the TikTok application. This research provides insight into how public sentiment can be measured and analyzed, and underscores the importance of choosing the right algorithm for data sentiment analysis on social media platforms.
Optimizing Goods Placement in Logistics Transportation using Machine Learning Algorithms based on Delivery Data Syawab, Moh Husnus; Arief, Yunifa Miftachul; Nugroho, Fresy; Kusumawati, Ririen; Crysdian, Cahyo; Almais, Agung Teguh Wibowo
Jurnal ELTIKOM : Jurnal Teknik Elektro, Teknologi Informasi dan Komputer Vol. 8 No. 2 (2024)
Publisher : P3M Politeknik Negeri Banjarmasin

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31961/eltikom.v8i2.1321

Abstract

This study addresses the challenge of predicting the optimal placement of goods for expeditionary transportation. Efficient placement is crucial to ensure that goods are transported in a manner that maximizes space and minimizes the risk of damage. This study aims to develop a prediction system using the K-Nearest Neighbor (KNN) method, which is based on expert data from expedition vehicles. To evaluate the effectiveness of the KNN method, the researcher compared it with the Support Vector Machine (SVM) method. By doing so, they sought to determine which method delivers more accurate predictions for the optimal placement of goods. The test results revealed that the KNN method outperformed SVM, achieving a higher accuracy of 95.97% compared to SVM's 92.85%. Additionally, KNN demonstrated a lower Root Mean Square Error (RMSE) of 0.18, indicating more precise predictions, while SVM had an RMSE of 0.271. These findings suggest that KNN is the more effective method for predicting the optimal placement of goods in expeditionary transportation.