Claim Missing Document
Check
Articles

Found 10 Documents
Search

Menurunkan Presentase Kredit Macet Nasabah Dengan Menggunakan Algoritma K-Nearest Neighbor Nanda Satria Halim Pratama; Dwi Teguh Afandi; Mulyawan Mulyawan; Iin Iin; Nisa Dienwati Nuris
INFORMATION SYSTEM FOR EDUCATORS AND PROFESSIONALS : Journal of Information System Vol 5 No 2 (2021): INFORMATION SYSTEM FOR EDUCATORS AND PROFESSIONALS (Juni 2021)
Publisher : Lembaga Penelitian dan Pengabdian Masyarakat Universitas Bina Insani

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51211/isbi.v5i2.1537

Abstract

Abstrak: FIF adalah salah satu Lembaga keuangan yang menyediakan berbagai macam alternatif pinjaman uang bagi nasabah. Sejatinya dalam pemberian kredit kepada nasabah pihak Lembaga keuangan mengalami berbagai masalah atau resikko. Salah satu masalah atau resiko yang dialami Lembaga Keuangan dalam pemberian kredit adalah perilaku nasabh yang macet dalam pembayaran kredit yang pada akhirnya menyebabkan kredit macet. Hal ini merupakan masalah yang serius yang perlu diperhatikan oleh pihak penyedia layanan keuangan untuk lebih berhati-hati dalam menentukan nasabah karena dalam pemberian kredit sangat beresiko khusuusnya pada PT FIF Goup Cabang Arjawinangun. Teknik Pengambilan data yang digunakan dalam pembuatan tugas akhir ini adalah dengan menggunakan observasi, wawancara, studi dokumentasi, dan data nasabah PT FIF Goup Cabang Arjawinangun. Sementara itu Teknik pengolahan data menggunakan prinsip tahapan knowledge discovery in database (KDD) yang terdiri dari data, Data Cleaning, Data Information, Data mining, Patternevalution, knowledge. Sementara itu atribut yang digunakan adalah dari nomort NIK, Kelancaran, Prediksi, Confident macet, confident lancer asset, dan omset perbulan dari nasabah. Metode K-NN dengan jumlah dataset sebanyak 296 data menghasilkan nilai akurasi sebesar 71%. Kata kunci: Kredit, K-Nearest Neighbor (KNN), Prediksi. Abstract: FIF is a financial institution that provides various kinds of money loan alternatives for customers, one of which is through the provision of loans in the form of credit to customers. In fact, in providing credit to customers, financial institutions experience various problems or risks. One of the problems or risks experienced by financial institutions In the provision of credit is the behavior of customers who are bad in credit payments which ultimately causes bad credit. This is a serious problem that financial service providers need to pay attention to to be more careful in determining customers because in providing credit is very risky, especially at PT FIF Goup Cabang Arjawinangun The data collection technique used in the making of this final project is to use observation, interviews, study documentation, and customer data of PT FIF Goup Cabang Arjawinangun Meanwhile, data processing techniques use the principles of knowledge discovery in databases (KDD) stages consisting of data, data cleaning, data transformation, data mining, pattern evolution, knowledge. Meanwhile, the attributes used are the NIK number, fluency, prediction, bad confidence, smooth confidence, assets, and turnover per month from customers. The K-NN method with a total dataset of 296 data yields an accuracy value of 71%. Keywords: Credit, K-Nearest Neighbor (KNN), Prediction.
Sistem Informasi Manajemen Persediaan Kue Kering Berbasis WEB Shalsa Fadillah Rahmadenta; Iin; Edi Wahyudin; Mulyawan; Umi Hayati
KOPERTIP : Jurnal Ilmiah Manajemen Informatika dan Komputer Vol. 4 No. 3 (2020): KOPERTIP: Jurnal Ilmiah Manajemen Informatika dan Komputer
Publisher : Puslitbang Kopertip Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Toko aneka kue dalam manajemen pengelolaan data persediaan kue kering masih mengalami keterlambatan dilakukan dengan cara menulisan ke dalam buku, hal itu menyebabkan terjadinya kesalahan dalam perhitungan jumlah barang yang masuk dan keluar serta membutuhkan waktu yang cukup lama, selain itu pencarian berbagai macam jenis kue kering dan proses pencatatan stok kue yang menipis/habis/kadaluarsa masih harus memeriksa secara langsung ke gudang. Oleh karena itu, untuk mengatasi permasalahan tersebut bertujuan untuk membuat sistem informasi manajemen berbasis web agar memudahkan dalam mencari persediaan kue yang sudah kadaluarsa dan membantu mengontrol stok kue kering yang sudah habis atau menipis. Dalam mengidentifikasi masalah tersebut menerapkan metode pengembangan sistem informasi yaitu model waterfall, dan menggunakan bahasa pemrograman PHP dan MySQL. Perancangan program yang akan dibuat menggunakan UML (unifed modeling language). Hasil dari penelitian ini adalah untuk memudahkan dalam manajemen pengelolaan persediaan kue kering yang sudah menipis atau habis dan pencarian kue yang sudah kadaluarsa dengan cepat dan akurat di toko Aneka Kue. Kata Kunci : Sistem Informasi Manajemen; Kue Kering; Metode Waterfall.
Implementasi Algoritma Decision Tree Dalam Klasifikasi Kompetensi Siswa Hilman Rifa'i; Ryan Hamonangan; Dian Ade Kurnia; Kaslani; Mulyawan
KOPERTIP : Jurnal Ilmiah Manajemen Informatika dan Komputer Vol. 6 No. 1 (2022): KOPERTIP : Jurnal Ilmiah Manajemen Informatika dan Komputer
Publisher : Puslitbang Kopertip Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32485/kopertip.v6i1.131

Abstract

Kompetensi adalah suatu kemampuan atau kecakapan yang dimiliki oleh seseorang dalam melaksanakan suatu pekerjaan atau tugas di bidang tertentu, sesuai dengan jabatan yang disandangnya. Pendapat lain mengatakan arti kompentesi adalah suatu keterampilan, pengetahuan, sikap dasar, dan nilai yang terdapat dalam diri seseorang yang tercermin dari kemampuan berpikir dan bertindak secara konsisten. Dengan kata lain, kompetensi tidak hanya tentang pengetahuan atau kemampuan seseorang, namun kemauan melakukan apa yang diketahui sehingga menghasilkan manfaat. Dalam penelitian ini difokuskan pada klasifikasi siswa berkaitan dengan kompetensi yang dimiliki, pendekatan penelitian ini menggunakan algoritma decission tree, dengan tujuan mendapatkan pola rekomendasi kompeten dan tidak kompeten. Berdasarkan hasil penelitian menjelaskan bahwa akurasi yang didapat yaitu sebesar 76,96 %
Analis Asosiasi Data Akses E-Commerece Menggunakan Algoritma Apriori Syarif Maulana Yaasin; Mulyawan; Nining Rahaningsih; Riri Narasati; Ade Rizki Rinaldi
KOPERTIP : Jurnal Ilmiah Manajemen Informatika dan Komputer Vol. 5 No. 1 (2021): KOPERTIP : Jurnal Ilmiah Manajemen Informatika dan Komputer
Publisher : Puslitbang Kopertip Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32485/kopertip.v5i1.135

Abstract

Penggunaan jaringan internet sangat penting di era digitalisasi saat ini kususnya para pedagang online untuk bisa menjangkau customer nya di berbagai platform e-commerce atau situs jual beli online. Dalam hal ini Indocyber subnet Cirebon barat adalah salah satu perusahaan penyedia layanan internet di Cirebon. Selain memberikan layanan internet Indocyber juga akan memberikan edukasi(pelatihan) untuk para seller pada platform e-commerce. Pada awal pelatihan akan lebih memfokuskan beberapa platform e-commerce dahulu agar bisa lebih fokus dalam memahaminya. Masalahnya adalah belum adanya analisis untuk memberikan referensi platform apa saja yang tepat diberikan pada pelatihan tersebut. Maka menjadi penting mengetahui pola hubungan antar e-commerce tersebut.Data mining dapat menjadi salah satu solusinya. Data yang diproduksi dari client pengguna layanana internet itu sendiri akan menjadi bahan dataset yang akan dianalisis, yaitu dengan merecord beberapa e-commerce sebagai bahan itemset. Analisis yang dilakukan dengan metode asosiasi dan menggunakan algoritma A-priori yang akan membaca pola hubungan antar itemset dan minimal support yang diinginkan.Dengan melakukan data mining metode asosiasi menggunakan algoritma A-priori yang dilakukan, tujuannya yaitu mengetahui pola hubungan dari nilai support dan confidence terhadap itemset platform e-commerce. Adapun hasil dari penelitian ini yaitu 10141 log user dan diketahui 99 user unik yang telah mengakses platform e-commerce yang telah ditentukan, dan mendapatkan nilai confidence tertinggi yaitu 100% tingkat kepercayaan user, jika user mengakses shopee maka akan mengakses juga lazada, begitupun sebaliknya jika user mengakses lazada maka akan mengakses juga shopee. Sehingga dapat diketahui dan menentukan platform e-commerce apa yang relevan untuk bahan pelatihan yang akan dilakukan oleh perusahaan. Kata Kunci: Data Mining, A-priori, Pelatihan, E-commerce, Indocyber.
Aplikasi Pemesanan Online Barbershop Berbasis Android untuk Meningkatkan Layanan Cep Lukman Rohmat; Irfan Ali; Mulyawan Mulyawan; Tati Suprapti; Utami Aryanti
Jurnal Accounting Information System (AIMS) Vol. 4 No. 2 (2021)
Publisher : Universitas Ma'soem

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32627/aims.v4i2.172

Abstract

The development of information and technology is a development that can be felt in everyday life, almost all activities already use digital. The problem in the barbershop business is the length of the queue which causes customers to feel bored or there are also busy customers. Therefore, technology is needed in the barbershop business. Based on these problems, it can be concluded that there is a need to build an android-based ordering application. The purpose of this research is to increase productivity, creativity, revenue and customer satisfaction. This study uses the stages of the Waterfall method. The Waterfall method is used as a reference in the process of making the online ordering application. The results of this study are an android-based online ordering application, this application is enough to help customers so they don't have to bother waiting in line at the barbershop because customers can set schedules on the application, especially during a pandemic like today. This application displays information about available time slots and those that have been booked by other customers so that customers can adjust their free time. The barbershop also does not need to register customers who place orders manually. This online booking application has passed trials with white box testing and black box testing methods. The result is that all the components contained in this online booking application system work as expected.
Menurunkan Presentase Kredit Macet Nasabah Dengan Menggunakan Algoritma K-Nearest Neighbor Nanda Satria Halim Pratama; Dwi Teguh Afandi; Mulyawan Mulyawan; Iin Iin; Nisa Dienwati Nuris
INFORMATION SYSTEM FOR EDUCATORS AND PROFESSIONALS : Journal of Information System Vol 5 No 2 (2021): INFORMATION SYSTEM FOR EDUCATORS AND PROFESSIONALS (Juni 2021)
Publisher : Lembaga Penelitian dan Pengabdian Masyarakat Universitas Bina Insani

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (675.38 KB) | DOI: 10.51211/isbi.v5i2.1537

Abstract

Abstrak: FIF adalah salah satu Lembaga keuangan yang menyediakan berbagai macam alternatif pinjaman uang bagi nasabah. Sejatinya dalam pemberian kredit kepada nasabah pihak Lembaga keuangan mengalami berbagai masalah atau resikko. Salah satu masalah atau resiko yang dialami Lembaga Keuangan dalam pemberian kredit adalah perilaku nasabh yang macet dalam pembayaran kredit yang pada akhirnya menyebabkan kredit macet. Hal ini merupakan masalah yang serius yang perlu diperhatikan oleh pihak penyedia layanan keuangan untuk lebih berhati-hati dalam menentukan nasabah karena dalam pemberian kredit sangat beresiko khusuusnya pada PT FIF Goup Cabang Arjawinangun. Teknik Pengambilan data yang digunakan dalam pembuatan tugas akhir ini adalah dengan menggunakan observasi, wawancara, studi dokumentasi, dan data nasabah PT FIF Goup Cabang Arjawinangun. Sementara itu Teknik pengolahan data menggunakan prinsip tahapan knowledge discovery in database (KDD) yang terdiri dari data, Data Cleaning, Data Information, Data mining, Patternevalution, knowledge. Sementara itu atribut yang digunakan adalah dari nomort NIK, Kelancaran, Prediksi, Confident macet, confident lancer asset, dan omset perbulan dari nasabah. Metode K-NN dengan jumlah dataset sebanyak 296 data menghasilkan nilai akurasi sebesar 71%. Kata kunci: Kredit, K-Nearest Neighbor (KNN), Prediksi. Abstract: FIF is a financial institution that provides various kinds of money loan alternatives for customers, one of which is through the provision of loans in the form of credit to customers. In fact, in providing credit to customers, financial institutions experience various problems or risks. One of the problems or risks experienced by financial institutions In the provision of credit is the behavior of customers who are bad in credit payments which ultimately causes bad credit. This is a serious problem that financial service providers need to pay attention to to be more careful in determining customers because in providing credit is very risky, especially at PT FIF Goup Cabang Arjawinangun The data collection technique used in the making of this final project is to use observation, interviews, study documentation, and customer data of PT FIF Goup Cabang Arjawinangun Meanwhile, data processing techniques use the principles of knowledge discovery in databases (KDD) stages consisting of data, data cleaning, data transformation, data mining, pattern evolution, knowledge. Meanwhile, the attributes used are the NIK number, fluency, prediction, bad confidence, smooth confidence, assets, and turnover per month from customers. The K-NN method with a total dataset of 296 data yields an accuracy value of 71%. Keywords: Credit, K-Nearest Neighbor (KNN), Prediction.
Penerapan Dan Pelatihan Perpustakaan Digital Desa Cangkring Kabupaten Cirebon Sandy Eka Permana; Ade Rizki Rinaldi; Mulyawan
AMMA : Jurnal Pengabdian Masyarakat Vol. 2 No. 8 : September (2023): AMMA : Jurnal Pengabdian Masyarakat
Publisher : CV. Multi Kreasi Media

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Community Engagement aims to implement and provide training related to the Digital Village Library in Cangkring Village, Cirebon Regency. This community engagement initiative strives to enhance access and utilization of digital information resources at the village level. Through a participatory and collaborative approach, this program involves various stakeholders including the local community, village government, and local educational institutions. The initial step involves a preliminary study to evaluate the existing conditions in Cangkring Village, including digital literacy, technological infrastructure, and the community's needs related to digital resources. Based on the findings of the Community Engagement, a platform and library management system suitable for the local context and needs were selected. Technological infrastructure was updated and the digital collection was enriched with various types of content, including e-books, journals, and educational materials.  The training program is designed to enhance digital literacy and maximize the benefits of the digital library. This engagement also involves ongoing mentoring and guidance for library staff and community members regarding the management and utilization of the digital library. Continuous evaluation is conducted to monitor the usage and effectiveness of the program, relying on feedback from the community. The results of this program demonstrate a significant improvement in access and utilization of digital information resources in Cangkring Village. These findings positively contribute to the enhancement of digital literacy and education at the village level. This program also provides a foundation for similar efforts in neighboring villages, strengthening the role of the digital library as a center for learning.
Inovasi Pembelajaran Di Masa COVID-19: Pelatihan Pengembangan Media Pembelajaran Di SMK Cendikia Kota Cirebon Sandy Eka Permana; Ade Rizki Rinaldi; Mulyawan
AMMA : Jurnal Pengabdian Masyarakat Vol. 1 No. 09 (2022): AMMA : Jurnal Pengabdian Masyarakat
Publisher : CV. Multi Kreasi Media

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Cendikia Vocational School, located in Cirebon City, is the main partner in this service. As a vocational high school, they faced various obstacles during the pandemic. One of them is the sudden shift from face-to-face learning to distance learning. This creates challenges in providing quality learning experiences. In some cases, students have difficulty accessing materials and interacting with teachers, which affects learning effectiveness. This Community Service highlights the importance of innovation in learning amidst the COVID-19 pandemic. Learning media development training at Cendikia Vocational School, Cirebon City has proven that a new approach to the teaching and learning process is able to provide concrete solutions in overcoming the challenges of distance learning. The results of this training showed significant improvements in student engagement, the quality of learning materials, and the effectiveness of communication between teachers and students. In addition, the use of technology and digital media has enabled wider and more flexible learning accessibility for students, even in difficult times like these. However, active commitment and cooperation from all relevant parties is needed to ensure the continuity and improvement of this learning innovation. Support from schools, parents and local governments in providing adequate facilities and infrastructure, as well as ongoing training for teachers in the use of technology are important factors in the successful implementation of this innovation.
Prediksi Tingkat Kelulusan Mahasiswa Menggunakan Machine Learning dengan Teknik Deep Learning Martanto Martanto; Irfan Ali; Mulyawan Mulyawan
Jurnal Informatika: Jurnal Pengembangan IT Vol 4, No 2-2 (2019): Special Issue on Seminar Nasional - Inovasi Dalam Teknologi Informasi & Teknol
Publisher : Politeknik Harapan Bersama

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30591/jpit.v4i2-2.1877

Abstract

The graduation rate of students on time at the Informatics Engineering study program STMIK IKMI Cirebon greatly affects the accreditation assessment. Graduation prediction is difficult to do, but many have done predictions using a variety of methods. Graduation prediction is needed in order to determine preventive policies for students who graduate not on time. The method used in this research is Machine learning with deep learning techniques. The data set used as many as 405 data of students who graduated on time or who were not on time. The research attributes used are the Nim attribute, the GPA value of students who have graduated and the status of graduating or not graduating. The results of this study are the level of accuracy using Machine Learning by 72.84%.
Aplikasi Pemesanan Online Barbershop Berbasis Android untuk Meningkatkan Layanan Cep Lukman Rohmat; Irfan Ali; Mulyawan Mulyawan; Tati Suprapti; Utami Aryanti
Jurnal Accounting Information System (AIMS) Vol. 4 No. 2 (2021)
Publisher : Ma'soem University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32627/aims.v4i2.237

Abstract

The development of information and technology is a development that can be felt in everyday life, almost all activities already use digital. The problem in the barbershop business is the length of the queue which causes customers to feel bored or there are also busy customers. Therefore, technology is needed in the barbershop business. Based on these problems, it can be concluded that there is a need to build an android-based ordering application. The purpose of this research is to increase productivity, creativity, revenue and customer satisfaction. This study uses the stages of the Waterfall method. The Waterfall method is used as a reference in the process of making the online ordering application. The results of this study are an android-based online ordering application, this application is enough to help customers so they don't have to bother waiting in line at the barbershop because customers can set schedules on the application, especially during a pandemic like today. This application displays information about available time slots and those that have been booked by other customers so that customers can adjust their free time. The barbershop also does not need to register customers who place orders manually. This online booking application has passed trials with white box testing and black box testing methods. The result is that all the components contained in this online booking application system work as expected.