Claim Missing Document
Check
Articles

Found 15 Documents
Search

Pelatihan Microsoft Office Dan Internet Trouble Shooting dalam Meningkatkan Pengetahuan Teknologi Informasi Pada Staff Sekretariat Daerah Pemerintah Kabupaten Bengkulu Tengah Putri, S.T, M.Kom, Tiara Eka Putri; Ferzha Putra Utama; Nurul Renaningtias
DHARMA RAFLESIA Vol 21 No 1 (2023): JUNI (ACCREDITED SINTA 5)
Publisher : Universitas Bengkulu

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33369/dr.v21i1.24283

Abstract

Kegiatan pada Sekretariat Daerah Kabupaten Bengkulu Tengah sudah mulai terdigitalisasi dan online. Sebagai pendukung sarana dalam bekerja, pegawai Pemerintah Daerah Kabupaten Bengkulu Tengah dituntut menguasai Microsoft Office dan Internet Troubleshooting. Kondisi saat ini, kemampuan Staf Sekretariat daerah masih dikatakan kurang atau masih pada kemampuan dasar. Keterbatasan pengetahuan tersebut dikarenakan belum adanya pelatihan yang memadai terhadap Staf Sekretariat Daerah Pemerintah Kabupaten Bengkulu Tengah. Sehingga pelayanan kepada masyarakat dan pembuatan laporan atau surat menyurat memerlukan waktu yang lumayan lama. Oleh karena itu, Pelatihan Microsoft Office dan Internet Troubleshooting perlu diberlakukan untuk menunjang kinerja pegawai pada Staf Sekretariat Daerah Pemerintah Kabupaten Bengkulu Tengah. Metode yang dilakukan dalam pengabdian ini adalah dengan melakukan pendampingan praktik langsung kepada peserta. Pengukuran atas pemahaman terkait dengan materi yang disampaikan akan dilakukan dengan menggunakan kuesioner online.  Khalayak sasaran pada pengabdian ini adalah 22 orang Perwakilan Staf Sekretariat Daerah Pemerintah Kabupaten Bengkulu Tengah. Hasil evaluasi setelah pelatihan menyatakan 89.5% peserta mampu menggunakan fungsi mailing merge, 78.9% mampu mengoperasikan Ms.Access dan 57.9% mampu untuk menyelesaikan masalah troubleshooting pada jaringan.
Optimalisasi Pembelajaran Literasi Numerasi Melalui Pelatihan Penggunaan Website Google Sites bagi Guru Komunitas Belajar Nurul Renaningtias; Atika Susanti; Bagus Mirzana; Cahyo Prasetyo; Dwi Lestari
I-Com: Indonesian Community Journal Vol 4 No 3 (2024): I-Com: Indonesian Community Journal (September 2024)
Publisher : Fakultas Sains Dan Teknologi, Universitas Raden Rahmat Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33379/icom.v4i3.5359

Abstract

The main goal of this community service activity is to enhance teachers' numeracy literacy skills through the use of Google Sites. The partner for this service activity is SDN 8 Bengkulu Tengah, Desa Rindu Hati. The method used for this community service includes the IPPE method, which comprises: (1) Needs Identification, (2) Planning, (3) Training Implementation, and (4) Evaluation. The evaluation instrument used was a test sheet. Based on the assessment results, there was a significant improvement in teachers' skills, with the average pretest score rising from 51.57 to 85.56 in the posttest. The N-Gain score averaged 0.74, which falls into the "High" category. This indicates that the community service activity successfully achieved its goal of improving teachers' ability to optimize numeracy literacy instruction through the use of Google Sites and providing a useful training module. It is recommended that teachers consistently apply the techniques and tools learned in the classroom and integrate these methods into the independent curriculum across all subjects.
Studi Komparasi Algoritma Decision Tree C4.5 dan K-Nearest Neighbor pada Klasifikasi Masa Studi dan Tingkat Stres Mahasiswa Renaningtias, Nurul; Vinalti, Gushe; Putri, Tiara Eka; Purwandari, Endina Putri; Ritonga, Yusak Stainly
Jutisi : Jurnal Ilmiah Teknik Informatika dan Sistem Informasi Vol 13, No 3: Desember 2024
Publisher : STMIK Banjarbaru

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35889/jutisi.v13i3.2272

Abstract

This research explores the utilization of Educational Data Mining (EDM) to analyze attributes that affect students' academic performance focusing on study duration and stress levels. In this study, the performance of two classification algorithms Decision Tree C4.5 and K-Nearest Neighbor (KNN) was compared in classifying students' study duration and stress levels based on alumni data from those who graduated between 202-2023. Several variables analyzed in this dataset include gender, GPA, the number of credits taken, admission pathway, participation in organizations, and activity as an assistant. The main findings of this study indicate that gender is a significant factor in predicting students' study duration, while GPA substantially impacts students' stress levels. Regarding algorithm performance, KNN outperformed Decision Tree C4.5, achieving an accuracy rate of 71.44% for study duration classification and 64.17% for stress level classification. This research provides valuable insights for higher education institutions in formulating policies to enhance students' academic performance and well-being.Keywords: Educational Data Mining; Decision Tree C4.5; K-Nearest Neighbor; Student Study Period; Student Stress Level AbstrakPenelitian ini mengeksplorasi pemanfaatan Educational Data Mining (EDM) untuk menganalisis atribut-atribut yang memengaruhi kinerja akademik mahasiswa dengan fokus pada durasi studi dan tingkat stres. Dalam penelitian ini, kinerja dua algoritma klasifikasi yaitu Decision Tree C4.5 dan K-Nearest Neighbor dibandingkan dalam mengklasifikasikan masa studi dan tingkat stres mahasiswa berdasarkan data alumni yang lulus antara tahun 2021-2023. Variabel yang dianalisis dalam dataset ini adalah jenis kelamin, IPK, jumlah SKS yang diambil, jalur masuk, keaktifan organisasi, dan keaktifan asistensi. Temuan utama dari penelitian ini menunjukkan bahwa jenis kelamin merupakan faktor signifikan dalam memprediksi durasi studi mahasiswa, sedangkan IPK memiliki dampak substansial terhadap tingkat stres mahasiswa. Berdasarkan hasil komparasi performa algoritma, KNN lebih unggul dibandingkan Decision Tree C4.5, dengan tingkat akurasi sebesar 71,44% untuk klasifikasi durasi studi dan 64,17% untuk klasifikasi tingkat stres. Penelitian ini memberikan wawasan berharga bagi institusi pendidikan tinggi dalam merumuskan kebijakan untuk meningkatkan kinerja akademik dan kesejahteraan mahasiswa. 
Deteksi Bahasa Isyarat Indonesia (BISINDO) Pada Video dengan YOLOv7 Renaningtias, Nurul; Utama, Ferzha Putra; Sobri, Azzahrah Nur Awaliah
JSAI (Journal Scientific and Applied Informatics) Vol 8 No 1 (2025): Januari
Publisher : Fakultas Teknik Universitas Muhammadiyah Bengkulu

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36085/jsai.v8i1.7067

Abstract

Sign language is a method of communication that does not use sound but uses physical movements such as hands, body, and lips. One of the sign languages that many deaf people use to communicate is Indonesian Sign Language (BISINDO). This study aims to implement an object detection and image classification model for BISINDO alphabet gestures using the You Only Look Once (YOLO) version 7 algorithm. This research uses video image data consisting of 26 alphabet letters. In this study, three experiments were conducted with different parameter values. Evaluation was carried out using the metrics of mean Average Precision (mAP), precision, recall, and F1-Score. Based on the experiments conducted, the best accuracy was obtained in experiment 1 with parameter values of epoch = 100, batch size = 64, learning rate = 0.001, weight decay = 0.0001, and momentum = 0.9, resulting in mAP@IoU 0.5 value of 0.995, recall 1.00, precision 1.00, F1-Score 1.00. However, it was found that in the application of the model to real-time scenarios, the detection results were not as good as the results obtained during the training process.
The popularity of political persuasive messages among beginner voters about the 2024 election content on social media posts Gushevinalti Gushevinalti; Nurul Renaningtias
Jurnal ASPIKOM - Jurnal Ilmu Komunikasi Vol 9, No 2 (2024): Jurnal ASPIKOM
Publisher : Asosiasi Pendidikan Tinggi Ilmu Komunikasi (ASPIKOM)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24329/aspikom.v9i2.1440

Abstract

This study aims to map what social media is popular among beginner voters as a political reference for the 2024 election. Furthermore, this study will examine persuasive political messages that appeal to novice voters so that it will illustrate what message formulas are popular among novice voters. This research will use a qualitative approach with data collection methods through open questionnaires to explore informants' social media use habits, mandala interviews, and Focus Group Discussions. Informants will be selected using purposive sampling techniques, namely first-time voters who have not been used to vote in regional elections, aged 17-18 years in 2023, and who actively access political information on social media. The results of the menu research show that the message formula that gets the attention of novice voters is in a way that is not pushy or persuasive. Use slang that is easy to understand and not rigid (implicitly does not contain the candidate's vision, mission, and program). Message packaging in videos and photos is more beautiful to novice voters than text because it aligns with social media, which is generally interested in Instagram and TikTok.