Claim Missing Document
Check
Articles

Found 27 Documents
Search

Klasifikasi Sentimen Wisatawan Candi Borobudur pada Situs TripAdvisor Menggunakan Support Vector Machine dan K-Nearest Neighbor Rahayu Prihatini Saputri; Wiwiek Setya Winahju; Kartika Fithriasari
Jurnal Sains dan Seni ITS Vol 8, No 2 (2019)
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM), ITS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (302.223 KB) | DOI: 10.12962/j23373520.v8i2.44391

Abstract

Candi Borobudur merupakan salah satu destinasi wisata di Indonesia yang telah dikenal hingga dunia internasional dan kini menjadi satu dari sepuluh destinasi prioritas yang ditetapkan oleh Kementerian Pariwisata. Oleh sebab itu pengelola wisata Candi Borobudur perlu memperhatikan berbagai persepsi wisatawan sebagai bagian dari proses evaluasi. Klasifikasi sentimen wisatawan berdasarkan data ulasan yang tersedia di situs TripAdvisor dilakukan dengan metode Support Vector Machine (SVM) dan K-Nearest Neighbor (K-NN), dengan penerapan teknik N-gram di kedua metode tersebut. Selain itu digunakan pula metode Synthetic Minority Oversampling Technique (SMOTE) untuk menangani kasus data imbalance. Hasil yang diperoleh dari penelitian ini adalah SVM kernel Radial Basis Function (RBF) dengan penerapan unigram merupakan metode terbaik untuk kasus klasifikasi sentimen wisatawan Candi Borobudur. Kinerja klasifikasi yang dihasilkan oleh metode tersebut tergolong sangat baik.
Clustering stationary and non-stationary time series based on autocorrelation distance of hierarchical and k-means algorithms Mohammad Alfan Alfian Riyadi; Dian Sukma Pratiwi; Aldho Riski Irawan; Kartika Fithriasari
International Journal of Advances in Intelligent Informatics Vol 3, No 3 (2017): November 2017
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v3i3.98

Abstract

Observing large dimension time series could be time-consuming. One identification and classification approach is a time series clustering. This study aimed to compare the accuracy of two algorithms, hierarchical cluster and K-Means cluster, using ACF’s distance for clustering stationary and non-stationary time series data. This research uses both simulation and real datasets. The simulation generates 7 stationary data models and another 7 of non-stationary data models. On the other hands, the real dataset is the daily temperature data in 34 cities in Indonesia. As a result, K-Means algorithm has the highest accuracy for both data models.
Data Mining Approach for Educational Decision Support Sinta Septi Pangastuti; Kartika Fithriasari; Nur Iriawan; Wahyuni Suryaningtyas
EKSAKTA: Journal of Sciences and Data Analysis VOLUME 2, ISSUE 1, February 2021
Publisher : Fakultas Matematika dan Ilmu Pengetahuan Alam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20885/EKSAKTA.vol2.iss1.art5

Abstract

data mining techniques in education sector have begun to evolve, along with the development of technology and the amount of data that can be stored in an education database storage system. One of them is a database of Bidikmisi scholarships in Indonesia. The Bidikmisi data used in this study will be classified using classification data mining technique. The technique that used in this study is random forest in combination with boosting algorithm and bagging algorithms. These algorithms also combine with SMOTE algorithm to handling the imbalance class in dataset. Based on the performance criteria G-mean and AUC, the algorithm combines with SMOTE tended to be better. The classification accuracy of each method being more than 90%
Klasifikasi Kategori Pengaduan Masyarakat Melalui Kanal LAPOR! Menggunakan Artificial Neural Network Mochamad Ihsan Ananto; Wiwiek Setya Winahju; Kartika Fithriasari
Inferensi Vol 2, No 2 (2019): Inferensi
Publisher : Department of Statistics ITS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (545.771 KB) | DOI: 10.12962/j27213862.v2i2.6821

Abstract

LAPOR! merupakan sarana aspirasi dan pengaduan masyarakat terkait kinerja pemerintah berbasis media sosial. Oleh karena laporan pengaduan masyarakat yang masuk tersebut berbentuk teks, maka dapat diselesaikan dengan cara text mining. Sehingga dilakukan analisis klasifikasi teks menggunakan Artificial Neural Network serta SMOTE untuk mengatasi data imbalance dan Chi-Square untuk proses seleksi variabel. Data yang digunakan adalah data historis aduan masyarakat melalui kanal LAPOR! tahun 2015. Melalui proses seleksi variabel, didapatkan sejumlah 428 term atau kata yang memberikan pengaruh terhadap kategori aduan masya-rakat. Ketepatan klasifikasi yang dihasilkan melalui metode Artificial Neural Network dengan feature selection dan 3 nodes hidden layer adalah precision 0,794, sensitivity 0,818 dan F1-Score 0,800. Selain itu didapatkan topik permasalahan yang patut mendapatkan perhatian lebih pada setiap kategori aduan dengan menggunakan word cloud.
Analisis Faktor Resiko Penyebab Diabetes Mellitus dengan Regresi Logistik Biner I Gusti Bagus Ngurah Diksa; Kartika Fithriasari
Inferensi Vol 4, No 1 (2021): Inferensi
Publisher : Department of Statistics ITS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j27213862.v4i1.8480

Abstract

Diabetes Mellitus menjadi salah satu masalah perawatan kesehatan utama di seluruh dunia. Penyakit gula ini merupakan penyakit berbahaya yang mana mengakibatkan kematian akibat komplikasi yang ditimbulkanya. Banyak faktor yang memengaruhi orang menderita diabetes , beberapa diantaranya yaitu usia, merokok,  serum sodium dan platelet dalam badan. Regresi logistik merupakan salah satu alat statistik yang dapat digunakan dalam permodelan klasifikasi tentang ada tidaknya yang mengalami diabetes. Tujuan penelitian ini adalah melihat pengaruh variabel independent usia, merokok, serum sodium dan platelet dalam mengklasifikasikan observasi  antara kategori yang tidak mengalami diabetes dan penderita diabetes.  Hasil yang didapatkan adalah semua variabel independent signfikan berpengaruh di dalam model dimana semakin meningkatnya umur kecenderungan orang menjadi diabetes semakin tinggi. Selain itu,  kegiatan merokok mampu memberikan kecenderungan orang menderita diabetes daripada orang yang tidak merokok. Kemudian semakin bertambahnya serum sodium dalam tubuh maka kecenderungan orang akan tidak menderita diabetes serta untuk bertambahnya platelet memberi kecenderungan sangat kecil orang menderita diabetes. Dalam klasifikasi ini, persentase akurasi klasifikasi sebesar 61,9 persen.  Walupun lebih dari 50 persen namun terjadi misklasifikasi orang yang menderita diabetes sebagai orang tidak mengalami diabetes sebesar 60 persen. Hal itu menyebabkan klasifikasi ini agak beresiko dalam mengelompokkan orang yang diabetes sebagai tujuan penanganan yang lebih cepat.
Generalized Additive Logistic Pada Pemodelan Faktor-Faktor Yang Mempengaruhi Keuntungan PT. PDC Kartika Fithriasari; Soehardjoepri Soehardjoepri; Nur Iriawan
Inferensi Vol 1, No 1 (2018): Inferensi
Publisher : Department of Statistics ITS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (293.023 KB) | DOI: 10.12962/j27213862.v1i1.6720

Abstract

Generalized Additive Models (GAM) merupakan kombinasi dari model additive dan generalized linear models (GLMs). GAM dengan variabel respon bertipe biner disebut model generalized additive logistic. Perbedaan hasil  model regresi logistik pada GLMs dan GAM didapatkan pada pemodelan faktor-faktor yang mempengaruhi keuntungan PT.PDC. Dari studi kasus PT.PDC. terlihat bahwa GLMs hanya menangkap hubungan linier antara log-odds dan variabel prediktor, sedangkan GAM dapat menangkap hubungan kuadratik yang digambarkan dalam grafik prediksi parsial.  Sehingga dapat disimpulkan bahwa GAM mampu memodelkan hubungan yang lebih kompleks dibanding GLMs.
Quantile Regression Neural Network Model For Forecasting Consumer Price Index In Indonesia Dwi Rantini; Made Ayu Dwi Octavanny; Rumaisa Kruba; Heri Kuswanto; Kartika Fithriasari
Inferensi Vol 1, No 1 (2018): Inferensi
Publisher : Department of Statistics ITS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (696.316 KB) | DOI: 10.12962/j27213862.v1i1.6719

Abstract

The main purpose of time series analysis is to obtain the forecasting result from an observation for future values. Quantile Regression Neural Network is a statistical method that can model data with non-homogeneous variance with artificial neural network approach that can capture nonlinear patterns in the data. Real data that allegedly have such characteristics is Consumer Price Index (CPI).  CPI forecasting is important to assess price changes associated with cost of living as well as identifying periods of inflation or deflation. The purpose of this research is to compare several method of forecasting CPI in Indonesia. The data used in this study during January 2007 until April 2018 period. QRNN method will be compared with Neural Network with RMSE evaluation criteria. The result is QRNN is the best method for forecasting CPI with RMSE 0.95.
Algoritma ClusterMix K-Prototypes Untuk Menangkap Karakteristik Pasien Berdasarkan Variabel Penciri Mortalitas Pasien Dengan Gagal Jantung Raditya Novidianto; Kartika Fithriasari
Inferensi Vol 4, No 1 (2021): Inferensi
Publisher : Department of Statistics ITS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j27213862.v4i1.8479

Abstract

Cardiovascular Disease  (CVD) atau penyakit kardiovaskular adalah salah satu penyebab utama kematian cukup besar di seluruh dunia yang berujung pada kejadian gagal jantung. Organiasasi kesehatan WHO menyebutkan jumlah orang yang  meninggal karena penyakit kardiovaskuler akibat gagal jantung setiap tahun memiliki rata-rata 17,9 juta kematian setiap tahunnya, yaitu sekitar 31 persen dari total kematian secara global. Pendeteksian faktor mortalitas pasien gagal jantung perlu dibentuk segmentasi yang berguna untuk memperkecil peluang terjadinya kematian akibat  gagal jantung. Salah satunya dengan menggunakan variabel penciri mortalitas akibat gagal jantung dengan cara menerapkan algoritma k-prototypes. Hasil penggerombolan terbentuk 2 kluster yang dianggap optimal berdasarkan nilai koefisien silhouette tertinggi yaitu sebesar 0.5777. Hasil penelitian dilakukan segementasi pasien dengan variabel penciri mortalitas pasien gagal jantung yang menunjukan bahwa kluster 1 merupakan gerombol pasien yang memiliki resiko rendah terhadap peluang mortalitas akibat gagal jantung dan kluster 2 merupakan gerombol pasien dengan karaktistik pasien dengan resiko yang tinggi terhadap peluang mortalitas akibat gagal jantung. Segementasi tersebut didasari dari nilai rata-rata setiap variabel penciri  dari faktor mortalitas gagal jantung pada setiap kluster yang dibandingkan dengan kondisi normal pada variabel serum creatine, ejection fraction, usia, serum sodium, tekanan darah, anemia, creatinine phosphokinase, plateles, merokok, jenis kelamin dan diabetes.
Handling Imbalance Data in Classification Model with Nominal Predictors Kartika Fithriasari; Iswari Hariastuti; Kinanthi Sukma Wening
(IJCSAM) International Journal of Computing Science and Applied Mathematics Vol 6, No 1 (2020)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (152.268 KB) | DOI: 10.12962/j24775401.v6i1.6643

Abstract

Decision tree, one of classification method, can be done to find out the factors that predict something with interpretable result. However, a small and unbalanced percentage will make the classification only lead to the majority class. Therefore, handling imbalance class needs to be done. One method that often used in nominal predictor data is SMOTE-N. For accuracy improving, a hybrid SMOTE-N and ADASYN-N was developed. SMOTE-N-ENN and ADASYN-N were developed for accuracy improvement. In this study, SMOTE-N, SMOTE-N-ENN and ADASYN-N will be compared in handling imbalance class in the classification of premarital sex among adolescent using base class CART. The conclusion obtained regarding the best method for handling class imbalance is ADASYN-N because it provides the highest AUC compared to SMOTE-N and SMOTE-N-ENN. The best decision tree provides information that factors that can predict adolescents having premarital sexual relations are dating style, knowledge of the fertile period, knowledge of the risk of young marriage, gender, recent education, and area of residence.
The Comparison of Classical and Bayesian Bivariate Binary Logistic Regression Prediction for Unbalanced Response (Case Study: Customers of Antivirus Software 'X' Company) Muktar Redy Susila; Heri Kuswanto; Kartika Fithriasari
Proceeding ISETH (International Summit on Science, Technology, and Humanity) 2015: Proceeding ISETH (International Conference on Science, Technology, and Humanity)
Publisher : Universitas Muhammadiyah Surakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The purpose of this study was to compare the performance of classical bivariate binary logistic regression and Bayesian bivariate binary logistic regression. The sizes of sample used in research were small and large sample. The size of the small sample was 200 and the large sample was 10000 samples. Parameter estimation method that often used in logistic regression modeling is maximum likelihood which is called the classical approach. However, using a maximum likelihood parameter estimation has several weaknesses. When the number of sample is small and the dependent variable is unbalanced, bias parameters are frequently obtained. Nevertheless, when the sample size is too large, it has propensity to reject H0. As the solution, the use of Bayesian approach to overcome the small sample size problem and unbalanced dependent variable is suggested. The case study carried out in this research was customer loyalty of 'X' Company. This study used two dependent variables, i.e. Customer Defections and Contract Answer. Initial information on the number of consumers who defected and not defected was unbalanced, likewise for the Contract Answers. Based on the comparison of classical and Bayesian bivariate binary logistic regression prediction, Bayesian method was evidenced to yield better performance compared to classical method.