Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : JOURNAL OF SCIENCE AND SOCIAL RESEARCH

APLIKASI SISTEM PAKAR UNTUK MENDIAGNOSA LEBIH DINI PENYAKIT KOLERA PADA ANAK MENGGUNAKAN METODE K-NEAREST NEIGHBOR (KNN) Zaimah Panjaitan; Elfitriani Elfitriani; Widiarti Rista Maya; Cindi D Siahaan
JOURNAL OF SCIENCE AND SOCIAL RESEARCH Vol 5, No 2 (2022): June 2022
Publisher : Smart Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.54314/jssr.v5i2.878

Abstract

Cholera is a disease that can be dangerous if not treated immediately. The main symptoms are diarrhea, shock, and seizures. Children with cholera need serious treatment from medical personnel. The problem that often occurs is that there are not many doctors who are experts in this field, plus for people who are far from urban areas such as people who live in mountainous areas or remote villages it is very unlikely to be able to consult a doctor due to distance, cost and time factors. This study aims to build an expert system application that is able to diagnose cholera in children early by applying the K-Nearest Neighbor (KNN) method, so that people, especially those who are far from urban areas, can find out more about cholera in children so that it can be treated more quickly. The KNN method can be implemented in a system that adopts the ability of experts to diagnose cholera in children. In applying the KNN method, symptom initialization is carried out by entering the density value and looking for the combination confidence value to get the diagnostic result. From this research, it can be concluded that the application that was built can be used to replace experts in helping to diagnose cholera in children early.
Analisis Wsm Dan Wp Dalam Menentukan Pupuk Terbaik Dengan Pendekatan Wsm-Score Dan Vector Asyahri Hadi Nasyuha; Suardi Yakub; Widiarti Rista Maya; Yohanni Syahra; Saniman Saniman
JOURNAL OF SCIENCE AND SOCIAL RESEARCH Vol 4, No 2 (2021): June 2021
Publisher : Smart Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.54314/jssr.v4i2.538

Abstract

Fertilizer is a material that is given to the soil or plants to meet the nutritional needs of the plant. Fertilization needs to be done rationally according to plant needs. In the supply of fertilizer, farmers have difficulty in determining the best fertilizer for their crops, making it difficult to choose which fertilizers are good for their crops. In determining the best fertilizer, a decision support system can be used as an alternative to help someone make decisions more effectively and efficiently by utilizing certain data and models. To solve the existing problems, it is necessary to conduct research in decision making using the Weighted Sum Model (WSM) and Weight Product (WP) Methods which can produce decisions based on the best fertilizer criteria that will be purchased by customers. The Weighted Sum Model (WSM) method is one of the simplest and easiest methods to understand its application, this method is also part of the MCDM (Multi-Criteria Decision Making) method in evaluating the value of each alternative. The Weight Product (WP) method is a method using multiplication to relate the attribute rating, where the rating of each attribute must be ranked with the attribute weight in question. From the results of the implementation of this system, it can be concluded that using the Weighted Sum Model and Weight Product method can help customers in the decision-making process for choosing the best fertilizer to use on their plants.
IMPLEMENTASI SISTEM PAKAR DIAGNOSIS PENYAKIT GANGGUAN SARAF ISKEMIK PADA MANUSIA MENGGUNAKAN METODE CERTAINTY FACTOR Darjat Saripurna; Nurcahyo Budi Nugroho; Faisal Taufik; Elfitriani Elfitriani; Widiarti Rista Maya
JOURNAL OF SCIENCE AND SOCIAL RESEARCH Vol 5, No 1 (2022): February 2022
Publisher : Smart Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.54314/jssr.v5i1.806

Abstract

Gangguan saraf iskemik merupakan  salah satu penyakit saraf  yang disebabkan  oleh kurangnya suplai darah ke otak sehingga kebutuhan darah didalam otak tidak terpenuhi. Kondisi ini dapat disebabkan beberapa penyakit komplikasi diantara nya hipertensi. Secara umum gangguan saraf iskemik ini dapat berisifat ringan, sedang dan akut. Kurangnya informasi tentang penyebab dan gejala terkait penyakit ini membuat masyarakat sulit melakukan pencegahan serta lambatnya proses penanganan penyakit gangguan saraf iskemik membuat angka kematian terhadap penyakit ini semakin meningkan.Melihat situasi yang terjadi maka dirancang sebuah Sistem Pakar yang mampu menerapkan metode Certainty Factor untuk mendiagnosa jenis penyakit gangguan saraf iskemik berdasarkan gejala-gejala klinis yang dirasakan oleh pasien, proses penerapan nya dengan terlebih dahulu mengumpulkan basis pengetahuan, kemudiann melakukan penelusurah inferensi Forward Chaining terhadap rule-rule yang ada dan selanjutnya melakukan proses perhitungan metode Certainty Factor untuk mengetahui  nilai probabilitas dan jenis penyakit Gangguan Saraf Iskemik.Dengan adanya Sistem Pakar ini diharapkan dapat memberikan kemudahan kepada masyarakat maupun dokter untuk berinteraksi dan dalam pengambil kesimpulan penyakit gangguan saraf iskemik dan sebagai diagnosa awal.