Jalu Tejo Nugroho
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

DETECTING THE AFFECTED AREAS OF MOUNT SINABUNG ERUPTION USING LANDSAT 8 IMAGERIES BASED ON REFLECTANCE CHANGE . Suwarsono; . Hidayat; Jalu Tejo Nugroho; . Wiweka; . Parwati; M. Rokhis Khomarudin
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 12, No 1 (2015)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1498.92 KB) | DOI: 10.30536/j.ijreses.2015.v12.a2672

Abstract

The position of Indonesia as part of a "ring of fire" bringing the consequence that the life of the nation and the state will also be influenced by volcanism. Therefore, it is necessary to map rapidly the affected areas of a volcano eruption. Objective of the research is to detect the affected areas of Mount Sinabung eruption recently in North Sumatera by using optical images Landsat 8 Operational Land Imager (OLI). A pair of Landsat 8 images in 2013 and 2014, period before and after eruption, was used to analysis the reflectance change from that period. Affected areas of eruption was separated based on threshold value of reflectance change. The research showed that the affected areas of Mount Sinabung eruption can be detected and separated by using Landsat 8 OLI images based on the change of reflectance value band 4, 5 and NDVI. Band 5 showed  the highest values of decreasing and band 4 showed the highest values of increasing. Compared with another uses of single band, the combination of both bands (NDVI) give the best result for detecting the affected areas of  volcanic eruption.
VARIABILITAS TINGKAT KEHIJAUAN VEGETASI BERDASARKAN ENHANCED VEGETATION INDEX SELAMA KEKERINGAN EKSTRIM TAHUN 2015 DI PULAU JAWA: (Variability of Vegetation Greenness Level based on Enhanced Vegetation Index during the 2015 Extreme Drought in Java Island) Sayidah Sulma; Jalu Tejo Nugroho; Yenni Vetrita; Sri Harini
Majalah Ilmiah Globe Vol. 24 No. 2 (2022): GLOBE VoL 24 No 2 TAHUN 2022
Publisher : Badan Informasi Geospasial

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Bencana kekeringan memiliki dampak yang sangat besar terhadap sektor pertanian dan perekonomian, sehingga pemantauan kekeringan perlu dilakukan secara berkala. Pemantauan kekeringan berbasis indeks vegetasi dari data satelit semakin berkembang dan perlu dikaji lebih lanjut khususnya untuk wilayah Indonesia. Pada tahun 2015 terjadi fenomena El Niño yang menyebabkan kondisi kekeringan ekstrim khususnya di wilayah Indonesia. Kondisi ini berpotensi untuk menjadi bahan kajian dalam pemantauan kekeringan menggunakan data penginderaan jauh. Tujuan penelitian ini adalah untuk mengetahui kemampuan pengkelasan Tingkat Kehijauan Vegetasi (TKV) dalam menggambarkan kondisi kekeringan, serta untuk menganalisis keterkaitan waktu terjadinya kekeringan meteorolgis dengan kekeringan pertanian. Pemantauan kondisi kekeringan dilakukan menggunakan indikator TKV. Variabilitas TKV diperoleh dari pengkelasan indeks vegetasi yaitu Enhanced Vegetation Index (EVI) dari data MODIS (Moderate Resolution Imaging Spectroradiometer), yang dianalisis mewakili kondisi kekeringan ekstrim yaitu pada saat El Niño tahun 2015 di Pulau Jawa dan dibandingkan dengan kondisi TKV 2019 yang mewakilli kondisi netral. Hasil perbandingan menunjukkan bahwa TKV dapat digunakan untuk pemantauan kondisi kekeringan di suatu wilayah, dimana saat musim kemarau di kedua waktu tersebut sama-sama menunjukkan kondisi kering, namun pada tahun 2015 saat iklim ekstrim TKV menunjukkan tingkat kehijauan vegetasi yang rendah hingga sangat rendah di sebagian besar Pulau Jawa. Berdasarkan penelitian diketahui bahwa rendahnya tingkat kehijauan vegetasi dapat mengindikasikan terjadinya kekeringan pertanian, dimana terdapat jeda waktu sekitar 2 bulan, dampak dari kekeringan meteorologi terhadap menurunnya kondisi tutupan vegetasi secara alami.