Rustiana Yuliasni
Balai Besar Teknologi Pencegahan Pencemaran Industri

Published : 6 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 6 Documents
Search

Influence of Operational Condition on the Performance of Halotolerant Enriched - Activated Sludge System for Treating Medium Salinity Peanut Roasted Wastewater Rustiana Yuliasni; Nanik Indah Setianingsih; Kukuh Aryo Wicaksono; Nani Harihastuti
Jurnal Riset Teknologi Pencegahan Pencemaran Industri Vol. 9 No. 2 (2018)
Publisher : Balai Besar Standardisasi dan Pelayanan Jasa Pencegahan Pencemaran Industri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21771/jrtppi.2018.v9.no2.p46-54

Abstract

This research aimed to investigate the influence of operational condition on the performance of halotolerant enriched - activated sludge system for treating high organic wastewater with medium salinity from roasted peanut industry. Roasted peanut wastewater with VLR ranged from 0.268 to 4.7 kg COD/m3.day and Chloride concentration ranged between 1582 - 4392 mg/L was treated continuously for almost 77 days. Two identical reactor with Volume 25 L, namely R1 a conventional Activated Sludge (AS) System and R2, a halotolerant enriched-AS. Both reactors were running with operational condition: HRT (9 h to 46 h) and MLSS (1000-6000 mg/L). Compared to conventional AS system, Halotolerant enriched-Activated sludge system could remove average of 86.7% COD, compared with conventional AS which was 85.7%. Average COD effluent of Halotolerant Enriched-Activated Sludge was also considerably lower, which was 127 mg/L, than conventional AS which was 150 mg/L. Halotolerant enriched-activated sludge also produced less sludge, giving a high F/M ratio (4.9) compared with conventional AS (3.5). In order to make effluent fulfilled stream standard regulation (at central java region COD was<150 mg/L), the favorable operational condition for both reactors would be at VLR 0.268 to 2.03 kg COD, HRT was 25 hours HRT, with MLSS was 2584 – 3956 mg/L and maximum chloride concentration 1920 mg/L.
Removal of Ammonia on Catfish Processing Wastewater using Horizontal Sub-Surface Flow Constructed Wetland (HSSFCW) Bekti Marlena; Rustiana Yuliasni; Sartamtomo; Agung Budiarto; Syarifa Arum; Misbachul Moenir; Cholid Syahroni
Jurnal Riset Teknologi Pencegahan Pencemaran Industri Vol. 9 No. 1 (2018)
Publisher : Balai Besar Standardisasi dan Pelayanan Jasa Pencegahan Pencemaran Industri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21771/jrtppi.2018.v9.no1.p15-21

Abstract

The performance of Horizontal Sub-Surface Flow Constructed Wetland (HSSFCW) to remove high ammonia content in catfish processing wastewater was investigated. A rectangular HSSFCW with 6 m long, 3 m wide ,1 m deep and divided into 3 compartments was used. Gravel beds were used as medium. Canna sp, Heliconia sp., and Papirus sp. were planted with plant density 10 plants per m2. The result showed that removal of ammonia was 67-87%, nitrite was 26-96%, nitrate was 35-99%. Ammonia removal relies on the efficient nitrification that requires sufficient amount of oxygenand organic carbon source to obtain optimum removal.
Kajian Potensi Teknologi Microbial Electrosynthesis Cell untuk Sintesis Senyawa Organik (C1 - C5) dari Gas Karbondioksida Rustiana Yuliasni
Jurnal Riset Teknologi Pencegahan Pencemaran Industri Vol. 6 No. 2 (2015)
Publisher : Balai Besar Standardisasi dan Pelayanan Jasa Pencegahan Pencemaran Industri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21771/jrtppi.2015.v6.no2.p67-74

Abstract

Karbon dioksida dapat direduksi menjadi etanol dan senyawa organik lainnya seperti asetat dengan cara mengaplikasikan energi listrik dan dengan bantuan bakteri elektroaktif sebagai katalis, suatu teknologi yang dinamakan sebagai Microbial Electrosynthesis Cell (MES). Teknologi ini menjadi sangat menarik untuk diteliti lebih lanjut karena merupakan upaya untuk menyimpan energi listrik dari sumber energi terbarukan seperti energi panas matahari dan angin, sebagai upaya untuk mereduksi gas CO2dan sebagai salah satu alternatif teknologi dalam produksi bahan bakar ramah lingkungan (biofuel). Walaupun demikian, teknologi ini masih tergolong baru,dan penelitian yang ada masih dalam skala laboratorium karena adanya hambatan-hambatan untuk aplikasi teknologi ini dalam skala pilot plant. Oleh karena itu, di dalam kajian iniakan menitik beratkan pada investigasi secara kuantitatif dengan cara mereview penelitian-penelitian yang sudah dilakukan selama kurun waktu 10 tahun ini, sehingga dapat dijadikan referensi dalam pengembangan teknologi ini untuk skala yang lebih besar nantinya.
Evaluating the Performance of Three Chambers Microbial Salinity Cell (MSC) Subjected to Different Substrate Concentrations to Accomplish Simultaneous Organic and Salt Removal in the Wastewater Rustiana Yuliasni; Nur Zen; Nanik Indah Setianingsih
Jurnal Riset Teknologi Pencegahan Pencemaran Industri Vol. 11 No. 1 (2020)
Publisher : Balai Besar Standardisasi dan Pelayanan Jasa Pencegahan Pencemaran Industri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21771/jrtppi.2020.v11.no1.p19-26

Abstract

This study aimed to identify the effect of substrate concentration on the performance of A Three chambers Microbial Salinity Cell (a three chambers MSC). In this study, 3 three chambers MSC was made of plexy glass with total volume of 200 ml. Alumunium wrapped with with platinum on vulcan carbon cloth were used as electrodes,with each working area 63 cm2. The results showed that a Three chambers Microbial Salinity Cell was able to generate electricity and at the same time removed salinity. The degree of electricity deneration and salinity removal were influenced by initial substrate concentration in the anode chamber. The higher substrate concentration, the better performance of MSC. The best performance of MSC achieved when COD was 2034 mg/L, resulted in maximum voltage of 0. 44 V, and maximum current density of 0.29 mA/m2. With % CE was 5.4%. The maximum conductivity increase in salinity chamber was from 11.2 µS/cm to 1027 µS/cm (salinity 0.57% ppt)
Full Scale Application of Integrated Upflow Anaerobic Filter (UAF)-Constructed Wetland (CWs) in Small Scale Batik Industry Wastewater Treatment Novarina Irnaning Handayani; Rustiana Yuliasni; Nanik Indah Setianingsih; Agung Budiarto
Jurnal Riset Teknologi Pencegahan Pencemaran Industri Vol. 11 No. 1 (2020)
Publisher : Balai Besar Standardisasi dan Pelayanan Jasa Pencegahan Pencemaran Industri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21771/jrtppi.2020.v11.no1.p27-35

Abstract

This research aimed to evaluate the implementation of integrated Upflow Anaerobic Filter (UAF)-Constructed Wetlands (CWs) in real condition of wastewater treatment plant in batik small scale industry. The full scale reactor consisted of equalization chamber with HRT of 2 days; Upflow Anaerobic Filter (UAF) with HRT of 6 days, and Horizontal Subsurface Constructed Wetlands (HSSCWs) with HRT of 1.5 days. The UAF- CWs integrated technology was used to treat batik wastewater with COD inlet of 1339 – 2034 mg/L and pH of 9.0 – 9.4. This study showed that single UAF technology alone was able to reduced 56 – 78%, while the integration UAF –wetland technology improved the performance to 85% and reduced the pH into 7.5 – 7.8
Biogas Production from Sugarcane Vinasse: A Review Rustiana Yuliasni; Rieke Yuliastuti; Nanik Indah Setianingsih
Jurnal Riset Teknologi Pencegahan Pencemaran Industri Vol. 12 No. 2 (2021)
Publisher : Balai Besar Standardisasi dan Pelayanan Jasa Pencegahan Pencemaran Industri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21771/jrtppi.2021.v12.no2.p34-44

Abstract

Biogas is a renewable energy sources that could replace the role of fossil fuel. Biogas could be produced from biomass or agro-industrial wastewater. Sugarcane vinasse has potential of biogas production due to its high BOD concentration (10–65 g BOD/l). However, the biogas production from sugarcane vinasse has several drawbacks that hinders the maximum biogas yield, such as: acidic pH (pH 3.5 – 5.0), high temperature (80–90°C) and high concentration of sulfuric acid (> 150 mg/L). Theoretically, the methane potential per gram COD is 0.35 L/gr COD, containing of 60% methane. However, up to date, the maximum biogas production from vinasse was less then its theoretical value. To get the full potential of biogas production from vinasse wastewater as well as to reduce the capital cost for full scale application, combination of suitable pre-treatment, selected microorganisms and bioreactor design-configuration are the most important parameters to be considered. This paper aims to explore the potential of sugarcane vinasse to produce biogas, by elaborating the aforementioned key parameters. In this review the basic characteristic and the potency of sugarcane vinasse wastewater will be elaborated.  Furthermore, the effect of key parameters such as pH, temperature, and organic load to biogas production will also be discussed. The biogas technology will also be explored. Lastly, conclusion will be determined