Facial identification has become necessary in the era of advanced technology, especially in security and human-computer interaction. However, accessories such as glasses often complicate the identification process. This research aims to develop a facial identification system that can recognize bespectacled individuals with high accuracy, overcoming the limitations of conventional facial recognition technology. The method combines nearest neighbor interpolation to improve image quality and Naïve Bayes classification to distinguish between bespectacled and non-spectacled faces. The results showed that the developed model effectively identified bespectacled subjects with a high recall rate, although accuracy and precision still needed improvement. The implications of this research are significant for the field of biometric security and facial recognition, offering new solutions for more inclusive and adaptive facial recognition systems and opening up opportunities for further research in method optimization and dataset quality improvement.