Claim Missing Document
Check
Articles

Found 10 Documents
Search

GENERALIZED STUMMEL CLASS AND MORREY SPACES OF NONHOMOGENEOUS TYPE Budhi, Wono Setya; Sihwaningrum, Idha; Soeharyadi, Yudi
Journal of the Indonesian Mathematical Society Volume 20 Number 2 (October 2014)
Publisher : IndoMS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22342/jims.20.2.187.141-147

Abstract

In the context of the spaces of nonhomogeneous type, in this paper we study a relation between the generalized Stummel class and the generalized Morrey spaces. The stummel class is a class of functions related to local behavior of mapping by fractional integral operators. Meanwhile, the generalized Morrey spaces are classes of functions related to local behavior of Hardy-Littlewood maximal function. Our results employ the doubling condition of functions under consideration.DOI : http://dx.doi.org/10.22342/jims.20.2.187.141-147
SILINDER BERPENAMPANG AIRFOIL DARI PENJUMLAHAN DUA LINGKARAN sihwaningrum, Idha
MATEMATIKA Vol 5, No 1 (2002): Jurnal Matematika
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (202.441 KB)

Abstract

In two dimensional nonviscous incompressible irrotational fluid flow, the equipotential lines and the streamlines can be related to the real and imaginary part of the complex function respectively.  By taking the streamlines equal to zero as the boundary fluid flows, we get several types of fluid flows such as fluid flow past a circular cylinder.  Having addition of two cylinder in a certain position result in an airfoil, it it reseanoble for asking whether addition of two equation of fluid flow past a cylinder give an equation of fluid flow past an airfoil cylinder.  This can be answer by examining  a lift from the airfoil equation. It is difficult to obtain the actual value of the lift.  To gain an understanding, we examine the change of square of the velocity in the neighbourhood of the airfoil.  Bernoulli's equation provides the connection between the pressure and the square of the velocity . Then the knowledge of the square of the fluid flow velocity gives an indication of the pressure.  Since the square of the fluid flow velocity in the neighbourhood below the airfoil is smaller than it is in the neighbourhood above the airfoil, then the pressure in the neighbourhood below the airfoil is greater than it is the neighbourhood above the airfoil.  This indicates that we have a lift from the equation of fluid flow past an airfoil in which its equation formed by summing two equation of fluid flow past a cylinder.  
Partial Fourier Transform Methods to Solve the Solution Formula of Stokes Equation in Half-Space Maryani, Sri; Zahratunnisa, Siti Fauziah; Sihwaningrum, Idha; Wardayani, Ari; Guswanto, Bambang Hendriya
JST (Jurnal Sains dan Teknologi) Vol 11, No 1 (2022)
Publisher : Universitas Pendidikan Ganesha

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23887/jst-undiksha.v11i1.39523

Abstract

Fluids are a shape of a matter which have substance liquids, gases and plasmas. In our daily life, fluids become important part, such as part of our blood and also help our body getting nutrients. It is well known that fluid motion can be described in mathematical model in especially in form of partial differential equations (PDE) and called as Navier Stokes Equations  (NSE). The Navier Stokes equation is derived from balance of conservation of mass and conservation of momentum. In this paper, we consider the solution formula of the linearized of the Navier Stokes Equation (NSE) with the initial boundary value (IBV) problem in half space without surface tension. The model problem under consideration covers of non-linear fluid type. We solve the solution formula of velocity and density of the model problem by using Fourier transform and partial Fourier transform method. The strategy geting the solution of the model problem is based on the analysis of some resolvent of the model problem which obtained by using Laplace transform of the Stokes equations. Therefore, In particular, the formula of velocity and density of the Stokes equation are obtained.
SOME PROPERTIES OF SUBSEMIHYPERGROUPS wardayani, Ari; Cerinda, Mitha; Sihwaningrum, Idha; Estri, Mutia nur; Sidik, Wuryatmo Ahmad
Jurnal Ilmiah Matematika dan Pendidikan Matematika Vol 13 No 2 (2021): Jurnal Ilmiah Matematika dan Pendidikan Matematika (JMP)
Publisher : Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20884/1.jmp.2021.13.2.4905

Abstract

ABSTRACT. In this paper we will present two properties of subsemihypergroups. The first property is a relation between subsemihypergroups and semihypergroup. This property enable us to get the second property, which provides a relation between subsemihypergroups and regular semihypergroups.Keywords: semihypergroup, subsemihypergroup, regular. ABSTRAK. Pada makalah ini disajikan dua buah sifat subsemihypergrup. Sifat pertama adalah hubungan antara subsemihypergrup dan semihypergrup. Berdasarkan sifat ini, selanjutnya diperoleh sifat kedua yakni hubungan antara subsemihipergrup dan semihipergrup reguler.Kata Kunci: semihipergrup, subsemihipergrup, reguler
PREDIKSI BERAT TUBUH SAPI PERAH FRIESIAN-HOLSTEIN MENGGUNAKAN MODEL VON BERTALANFFY Larasati, Niken; Sulistyoningrum, Tri Puji; Estri, Mutia Nur; Sihwaningrum, Idha; Reorita, Rina
Jurnal Ilmiah Matematika dan Pendidikan Matematika Vol 13 No 2 (2021): Jurnal Ilmiah Matematika dan Pendidikan Matematika (JMP)
Publisher : Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20884/1.jmp.2021.13.2.4949

Abstract

ABSTRACT. In this paper, we predict the weight of Friesian-Holstein dairy cows by using Von Bertalanffy model. The metabolism rate in the model includes the anabolism and catabolism rate. The prediction is important to determine the age of the first cows mating since an improper age of the first mating will result in the low production of milk and a non ideal weight of the cow calves. The result of the simulation shows that the constant of anabolism is 0.3854, and the constant of catabolism is 0.0438. By using these constans, it is found that the result of the prediction has an average absolute error of 4,9708% (6,5358 kg). Furthermore, it is found that the cows can be mated when their weight is between 273,9152 kg and 303,2340 kg, that is when their age is between 59 and 66 weeks (or between 14 and 16 months).Keywords: Von Bertalanffy’s model, Friesian-Holstein dairy cow, anabolism and catabolism, age of mating, weight. ABSTRAK. Pada makalah ini dibahas mengenai prediksi berat tubuh sapi perah Friesian-Holstein menggunakan model Von Bertalanffy. Laju metabolisme pada model terdiri dari anabolisme dan katabolisme. Prediksi berat tubuh sapi perah ini penting karena dapat digunakan untuk menentukan usia kawin pertama kali sapi perah FH. Usia kawin pertama yang tidak tepat dapat menyebabkan produksi susu yang rendah dan tidak tercapainya berat tubuh pedet yang ideal. Dari hasil simulasi diperoleh konstanta anabolisme sebesar 0,3854 dan konstanta katabolisme sebesar 0,0438. Dengan konstanta tersebut, diperoleh rata-rata kesalahan absolut sebesar 4,9708% (6,5358 kg). Selanjutnya, diperoleh hasil bahwa sapi dapat dikawinkan pada saat memiliki berat tubuh 273,9152 kg sampai 303,2340 kg dengan umur 59-66 minggu (14-16 bulan).Kata Kunci: Model Von Bertalanffy, sapi perah Friesian-Holstein, anabolisme dan katabolisme, usia kawin, berat tubuh.
THE NEWTON-RAPHSON METHOD OF REAL-VALUED FUNCTIONS IN DISCRETE METRIC SPACE Herdiana, Indra; Sihwaningrum, Idha; Sugandha, Agus
Jurnal Ilmiah Matematika dan Pendidikan Matematika Vol 15 No 2 (2023): Jurnal Ilmiah Matematika dan Pendidikan Matematika (JMP)
Publisher : Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20884/1.jmp.2023.15.2.8875

Abstract

ABSTRACT. This paper studies the Newton-Raphson method to approximate a root of a real-valued function in one-dimensional real discrete metric space. The method involves a derivative and is considered to be convergent very fast. However, the derivative is derived from the limit definition with respect to the Euclidean distance, different from that of the discrete metric space. This research investigates the Newton-Raphson method with respect to derivatives defined in discrete metric spaces by deriving the derivative first. The examined derivatives are absolute derivative and parameterised derivative on metric spaces. The results show that the constructed Newton-Raphson method can be an alternative root-finding method exemplified by some examples.Keywords: Newton-Raphson method, discrete metric space, metric space derivative. ABSTRAK. Artikel ini membahas metode Newton-Raphson untuk mengaproksimasi akar dari fungsi bernilai riil pada ruang metrik diskrit riil berdimensi satu. Metode tersebut melibatkan turunan fungsi dan cenderung konvergen dengan cepat. Namun, turunan fungsi tersebut didapatkan dari definisi limit untuk jarak Euclid yang berbeda dengan jarak pada ruang metrik diskrit. Penelitian ini menyelidiki metode Newton-Raphson untuk turunan fungsi pada ruang metrik diskrit diawali dengan mengonstruksi turunan tersebut. Turunan yang digunakan adalah turunan mutlak dan turunan berparameter pada ruang metrik. Hasil penelitian menunjukkan bahwa metode Newton-Raphson yang dibentuk dapat menjadi metode alternatif untuk pencarian akar fungsi menurut beberapa contoh.Kata Kunci: metode Newton-Raphson, ruang metrik diskrit, turunan ruang metric.
Ketaksamaan Tipe Lemah untuk Operator Integral Fraksional Di Ruang Morrey Atas Ruang Metrik Tak Homogen Sihwaningrum, Idha
Prosiding Konferensi Nasional Penelitian Matematika dan Pembelajarannya 2016: Prosiding Konferensi Nasional Penelitian Matematika dan Pembelajarannya
Publisher : Universitas Muhammadiyah Surakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Pada makalah ini dibuktikan ketaksamaan tipe lemah (1, q) untuk operator integral fraksional di ruang Morrey atas ruang metrik tak homogen. Ketaksamaan tersebut dibuktikan menggunakan suatu ketaksamaan yang melibatkan operator maksimal serta ketaksamaan Chebysev. Bukti alternatif dari ketaksamaan tipe lemah (1, q) untuk operator integral fraksional juga dapat diperoleh menggunakan ketaksamaan tipe Hedberg dan ketaksamaan tipe lemah (1, 1) dari operator maksimal. Hasil yang diperoleh pada makalah ini merupakan perumuman dari ketaksamaan tipe lemah (1, q) untuk operator integral fraksional di ruang Lebesgue atas ruang metrik tak homogen
Calculation Option Price on Shares PT. Nippon Indosari Corpindo Tbk. with Fuzzy Binomial Tree Model Prabowo, Agung; Mufidah, Afifah; Sihwaningrum, Idha; Hamisu Kankarofi, Rabiu
International Journal of Mathematics, Statistics, and Computing Vol. 1 No. 4 (2023): International Journal of Mathematics, Statistics, and Computing
Publisher : Communication In Research And Publications

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46336/ijmsc.v1i4.36

Abstract

The Cox-Ross-Rubinstein binomial tree model is widely used in stock and derivative securities calculations, such as options calculations. The binomial CRR model assumes that the parameter increases in option prices and decreases in option prices so this model produces stock price movements up and down stock price movement. However, stock price movements show price fluctuations and cause the volatility of the value to be unsuitable. In this study, modeling stock and option price movements using a fuzzy binomial tree model. The data used was data on the movement of the stock price of Nippon Indosari Corpindo Ltd Plc from February 2021 to January 2022. The results showed that for February 2022, with a risk size of 90%, the selling price options with the greatest volatility of 51.6484081, medium volatility of 33.33154354, and the smallest volatility of 28.17155892.
SIGNIFICANT FACTORS INFLUENCING HYPERBILIRUBINEMIA AT SANTO YUSUF MOTHER AND CHILD HOSPITAL, NORTH JAKARTA USING BINARY LOGISTIC REGRESSION Pratiwi, Elsa Anna; Nurhayati, Nunung; Sihwaningrum, Idha
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 18 No 1 (2024): BAREKENG: Journal of Mathematics and Its Application
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/barekengvol18iss1pp0075-0084

Abstract

Hyperbilirubinemia is a problem that often occurs in newborns. The cause of hyperbilirubinemia is multifactorial including maternal, perinatal or environmental factors that can be risk factors in newborns. Hyperbilirubinemia that occurs in infants is usually due to high bilirubin levels. High bilirubin can be a poison that causes brain damage so hyperbilirubinemia must be treated appropriately so as not to cause chronic complications. This study aims to identify significant factors affecting hyperbilirubinemia in infants at Santo Joseph Mother and Child Hospital, North Jakarta using binary logistic regression. This research was conducted at Santo Joseph Mother and Child Hospital for the first time. Factors that are thought to influence are gestational age, birth weight, childbirth, breastfeeding, and infection status. The results showed that the significant factors affecting hyperbilirubinemia in infants were the process of childbirth, milk feeding and infection status. Based on the odds ratio value for each variable, it can be concluded that babies with abnormal birth processes have a risk of hyperbilirubinemia of 2.9628 times greater than babies with normal births. Meanwhile, formula-fed infants have a risk of hyperbilirubinemia of 4.2854 times less than breastfed babies. Furthermore, infants affected by infection have a risk of developing hyperbilirubinemia of 5.5752 times greater than infants who do not get infection.
Partial Fourier Transform Methods to Solve the Solution Formula of Stokes Equation in Half-Space Maryani, Sri; Zahratunnisa, Siti Fauziah; Sihwaningrum, Idha; Wardayani, Ari; Guswanto, Bambang Hendriya
JST (Jurnal Sains dan Teknologi) Vol. 11 No. 1 (2022)
Publisher : Universitas Pendidikan Ganesha

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (382.102 KB) | DOI: 10.23887/jstundiksha.v11i1.39523

Abstract

Fluida adalah suatu bentuk materi yang memiliki zat cair, gas, dan plasma. Dalam kehidupan sehari-hari, cairan menjadi bagian penting, seperti bagian dari darah dan juga membantu tubuh mendapatkan nutrisi. Selain itu, beberapa fenomena lingkungan terkait erat dengan mekanika fluida. Konsep fluida membantu kita memahami perilaku fluida dengan berbagai kondisi. Telah diketahui bahwa gerak fluida dapat digambarkan dalam model matematika khususnya dalam bentuk persamaan diferensial parsial (PDE) dan disebut sebagai persamaan navier stokes (NSE). Persamaan navier stokes diturunkan dari keseimbangan kekekalan massa dan kekekalan momentum. Dalam penelitian ini mempertimbangkan rumus solusi linierisasi persamaan navier stokes (NSE) dengan masalah nilai batas awal (IBV) dalam ruang setengah tanpa tegangan permukaan. Masalah model yang dipertimbangkan meliputi jenis fluida nonlinier. Prosedur penelitian yang merupakan transformasi model masalah menggunakan transformasi fourier dari sistem persamaan yang baru. Kemudian dihitung rumus solusi dari sistem persamaan baru untuk kecepatan dan kepadatan dari masalah model dengan menggunakan metode transformasi Fourier dan transformasi fourier parsial. Strategi untuk mendapatkan solusi masalah model didasarkan pada analisis beberapa penyelesaian masalah model yang diperoleh dengan menggunakan transformasi laplace dari persamaan stokes. Oleh karena itu, secara khusus, rumus kecepatan v=(v_1,…,v_N ) dan kepadatan (x,t) dari persamaan stokes diperoleh.