Endang Sutedi
IRIAP

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Potency Of Clitoria Ternatea As Forage For Livestock Sutedi, Endang
Indonesian Bulletin of Animal and Veterinary Sciences Vol 23, No 2 (2013)
Publisher : Indonesian Animal Sciences Society

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (367.095 KB) | DOI: 10.14334/wartazoa.v23i2.715

Abstract

Availability of forage is one of the factors determining the success of ruminant livestock production, especially during drought that resulting in poor livestock condition. Forage legume is an important group of forage plants, containing high nutritive value. One of the legume plants which potential as ruminant feed is Clitoria ternatea. This plant can grow well in all types of soil and dry conditions, also produces seed continously. The production of forage was 25-29 ton DM/ha with seed production was 2.2 ton DM/ha per harvest (42 day cutting interval). The crude protein and crude fiber contents of C. ternatea leaf were 21.5 and 29%, respectively. Meanwhile, the crude protein, crude fat and sugar contents of C. ternatea seed were 25-38,10 and 5%, respectively. This plant can be fed to ruminant as fresh forage or hay with no negative effect on growth performance of animal. The average daily gain of cattle grazing on mixture of Brachiaria mutica grass and C. ternatea was 680 g/day. The value of DM and OM digestibilities of C. ternatea in cattle were 50.15 and 53.47%, respectively. Feeding C. ternatea to dairy cow impoved the content of fat and total solid of milk, meanwhile feeding it to male sheep improved quality of semen.Key words: Clitoria ternatea, animal feed
Productivity of Calliandra calothyrsus, Indigofera zollingeriana and Gliricidia sepium on acid soil in the greenhouse Herdiawan, Iwan; Sutedi, Endang
Indonesian Journal of Animal and Veterinary Sciences Vol 20, No 2 (2015): JUNE 2015
Publisher : Indonesian Animal Sciences Society

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (314.815 KB) | DOI: 10.14334/jitv.v20i2.1165

Abstract

Acid soil which contains Al3+ and Mn2 is generally unfavorable for crop including the tree legumes. The minerals are toxic to the plants resulted minimalization of growth and crop production. Caliandra calothyrsus, Indigofera zollingeriana, and Gliricidia sepium were tree legumes those are generally used for forage.  The aim of this study was to compare their tolerancy to Al3+ and growth production on acid soil. The plants were grown in ultisol soil with 4.57 of pH collected from Palm Oil plantation, Sei-Putih, Medan. The experiment was carried out using completely randomized design (CRD) with kind of plants as the treatment and 12 times replication. The data were analyzed by ANOVA using the SPSS and excel program, followed by LSD test when the data was significantly difference. Variables measured were plant morphology, concentration of Al 3+ in the plant tissues, plant height, stem diameter, number of stem branches, root length, plant production, nutrient content, energy and in vitro digestibility. The highest Al 3+ contents in leaves, stem and root were significantly observed in those G. sepium, while the lowest contents was observed from those of  I. zollingeriana. G. sepium was the most dwarf plant and its stem diameter was comparable with the one of C. calothyrsus, but was lower than that of I. zollingeriana. The highest number of branches was significantly observed in I. zollingeriana, while the lowest one was at G. sepium. The root length of C. calothyrsus was comparable with that of I. zollingeriana, while G. sepium root was the shorthest one. Root nodulation was only formed at I. zollingeriana. The highest biomass production was observed at I. zollingeriana which also had highest protein content and the best digestibility.  Data from Al3 + concentration in tissues of leaves, stems and roots showed that I. zollingeriana was the most tolerant plant to acid soils. This tolerancy also affected higher plant growth, biomass production, nutrient concentration, and digestibility. Key Words: Tree Legume, Acid Soil, AI3+