sutimin sutimin
Department Of Mathematics, Diponegoro University, Jl. Prof. H. Soedarto SH, Tembalang, Semarang 50275

Published : 18 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 18 Documents
Search

MODEL DINAMIK PENULARAN HUMAN IMMUNODEFICIENCY VIRUS (HIV) Sutimin, Sutimin; Imamudin, Imamudin
JURNAL SAINS DAN MATEMATIKA Volume 17 Issue 1 Year 2009
Publisher : JURNAL SAINS DAN MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (6432.389 KB)

Abstract

ABSTRAK-Human Immunodeficiency Virus (HIV) adalah virus yang dapat merusak sistem kekebalan tubuh manusia Virus HIV dapat menyerang orang yang rentan ketika orang yang rentan itu melakukan kontak dengan penderita virus HIV hingga terinfeksi  virus HIV pada akhirnya dapat menderita AIDS atau seropositif non-AIDS. Dengan asumsi-asumsi tentang penularan virus HIV dapat diformulasikan suatu model matematika tentang perpindahan antar orang-orang rentan ke infeksi HIV, penderita AIDS dan seropositif non-AIDS. Model matematika yang menjelaskan penyebaran virus HIV dinyatakan dalam sistem persamaan differensial nonlinear, analisa kestabilan titik kesetimbangan dari model digunakan dengan metode Liapunov dan metode pelinearan untuk mengetahui kesetimbangannya  model. Kata  Kunci : HIV, AIDS dan Kestabilan.
SOLUSI PERIODIK DARI PERSAMAAN KORTEWEG de VRIES (KdV) DENGAN OPERATOR BILINIER HIROTA Rubiyanti, Sri; Sutimin, Sutimin
JURNAL SAINS DAN MATEMATIKA Volume 18 Issue 3 Year 2010
Publisher : JURNAL SAINS DAN MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (3773.203 KB)

Abstract

Abstract. Hirota bilinear  operator  (Hirota Method) is proposed  to directly construct periodic wave solutions from Korteweg de Vries (KdV)  equation.  This solution can be expressed  in terms of  Jacobi  Theta 4 (Θ4)  functions, with  dispersion  relation  yielded  from  degradation of  biliear  equation. Then,  sinusoidal wave,  Solitary,  and Cnoidal can  be  reduced  from this solution to asses  certain of nome  (q).Key words: Hirota Bilinear operator,  Korteweg  de Vries  (KdV) equation,  periodic profil  gelombang  khusus seperti gelombangCnoidal  dan  Solitary.Permalink : http://ejournal.undip.ac.id/index.php/sm/article/view/2962
Comparison Between Zero Point and Zero Suffix Methods in Fuzzy Transportation Problems Pukky Tetralian Ngastiti; Bayu Surarso; Sutimin Sutimin
Jurnal Matematika MANTIK Vol. 6 No. 1 (2020): Mathematics and Applied Mathematics
Publisher : Mathematics Department, Faculty of Science and Technology, UIN Sunan Ampel Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (296.261 KB) | DOI: 10.15642/mantik.2020.6.1.38-46

Abstract

Transportation is discussing the problems of distribution items from a source to a destination with an aim to minimize transportation costs. The problem of fuzzy transport is the cost of transportation, supply, and demand with a quantity of fuzzy. The purpose of the research is a study of a comparison of theories from the zero-point method and the zero-suffix method in determining the optimal solution on cost transportation. Based on the result of the theoretical comparison, it can be concluded that the process of using the zero-suffix method is shorter in determining an optimal solution in 6 steps than that of a zero-point method in 11 steps. For achieving the optimal value shows that for zero-suffix the method of occurrence iteration in the sixth step, but for the zero-point method the iteration occurs in the ninth step. The results in the numerical comparison we conclude the distribution cost using two methods is the same, based on the demand and supply obtained 7 times iteration and 7 items allocation for zero point method, while 6 times iteration and 7 items allocation for zero suffix method.
Vaksinasi dan Treatment pada Predator-Prey dengan Dua Jenis Pemangsa yang Salah Satunya Terinfeksi Khozin Mu'tamar; Dinita Rahmalia; Sutimin Sutimin
EKSAKTA: Journal of Sciences and Data Analysis VOLUME 19, ISSUE 2, August 2019
Publisher : Fakultas Matematika dan Ilmu Pengetahuan Alam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20885/eksakta.vol19.iss2.art4

Abstract

Predator-prey adalah model matematika yang menggambarkan perilaku interaksi dua spesies, satu diantaranya merupakan pemangsa dan satu lainnya sebagai mangsa. Populasi pemangsa biasanya berada di level lebih atas dibandingkan level mangsa pada rantai makanan. Oleh karena itu, populasi pemangsa lebih sedikit dan rentan akan kepunahan baik karena penyakit ataupun kalah persaingan. Pada artikel ini, dikembangkan model predator-prey dengan dua jenis pemangsa dan salah satunya terinfeksi penyakit. Untuk mencegah penyebaran, diberikan tindakan vaksinasi dan pengobatan yang dirumuskan menggunakan Pontryagin Minimum Principle (PMP). Analisis kestabilan dilakukan secara lokal untuk menunjukkan tindakan vaksinasi dan pengobatan berpengaruh terhadap sifat kestabilan. Terakhir, simulasi dilakukan secara numerik guna melihat perilaku model dan performa vaksinasi dan treatment yang diberikan
Modelling Multiple Dosing with Drug Holiday in Antiretroviral Treatment on HIV-1 Infection Sutimin Sutimin; Nuning Nuraini; Faraimunashe Chirove; Lisyani Budipradigda Suromo
Journal of Mathematical and Fundamental Sciences Vol. 49 No. 1 (2017)
Publisher : Institute for Research and Community Services (LPPM) ITB

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/j.math.fund.sci.2017.49.1.1

Abstract

A within-host mathematical model to describe the dynamics of target cells and viral load in early HIV-1 infection was developed, which incorporates a combination of RTI and PI treatments by using a pharmacokinetics model. The local stability of uninfected steady state for the model was determined using an alternative threshold. The pharmacokinetics model was employed to estimate drug efficacy in multiple drug dosing. The effect of periodic drug efficacy of pharmacokinetic type on outcome of HIV-1 infection was explored under various treatment interruptions. The effectiveness of treatment interruption was determined according to the time period of the drug holidays. The results showed that long drug holidays lead to therapy failure. Under interruption of treatments combining RTI and PI therapy, effectiveness of the treatment requires a short duration of the drug holiday. 
Modeling CD4+ T cells and CTL response in HIV-1 infection with antiretroviral therapy Sutimin Sutimin; Sunarsih Sunarsih; R. Heru Tjahjana
Communication in Biomathematical Sciences Vol. 1 No. 2 (2018)
Publisher : Indonesian Bio-Mathematical Society

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/cbms.2018.1.2.3

Abstract

The majority of an immune system infected by HIV (Human Immunodeficiency Virus) is CD4+ T cells. The HIV-1 transmission through cell to cell of CD4+ T cells supports the productive infection. On the other hand, infected CD4+ T cells stimulate cytotoxic T-lymphocytes cells to control HIV-1 infection. We develop and analyze a mathematical model incorporating the infection process through cell to cell contact of CD4+ T cells, CTL compartment and the combination of RTI and PI treatments. By means of the alternative reproduction ratio, it is analyzed the stability criteria and the existence of endemic equilibrium. Numerical simulations are presented to study the implication of the combination of RTI and PI therapy. The results indicate that RTI drug shows more significant effect in reducing HIV-1 infection compared to PI drug.
On the Reproduction Ratio of Dengue Incidence in Semarang, Indonesia 2015-2018 Juni Wijayanti Puspita; Muhammad Fakhruddin; Hilda Fahlena; Fatkhur Rohim; Sutimin Sutimin
Communication in Biomathematical Sciences Vol. 2 No. 2 (2019)
Publisher : Indonesian Bio-Mathematical Society

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/cbms.2019.2.2.5

Abstract

Dengue is one of the mosquito-borne diseases caused by dengue viruses (DENV), which has become endemic in most tropical and subtropical countries, including Indonesia. Since there is a lot of dengue incidence on children of age less than fourteen years old in Semarang, Indonesia, it is the interest here to analyze the different rates of infection among different age groups. A SIR-UV mathematical model with age structure in human the population is constructed to describe dengue transmission in Semarang from 2015 to 2018. In this study, we separated the human population into four age classes: children (0-4 years), youngster (5-14 years), productive adults (15-60 years) and non-productive adults (over 60 years). We use Particle Swarm  Optimization to obtain optimal parameters for the transmission rates based on the yearly incidence. The basic reproduction ratio (R0) is derived from the Next Generation Matrix and is evaluated by using the optimal parameters for data Semarang in 2015-2018. Numerical simulation results show that the number of dengue incidence is in a good agreement with the actual data in Semarang for 2015-2018.
Optimal Control Approach For HIV-1 Infection in CD4+T Cells with RTI and PI Treatments R. Heru Tjahjana; Sutimin Sutimin
(IJCSAM) International Journal of Computing Science and Applied Mathematics Vol 6, No 2 (2020)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24775401.v6i2.6416

Abstract

The purpose of this paper is to expose the optimal approach of controlling HIV-1 infection in CD4+T cells with Reverse Transcriptease Inhibitors (RTI) and Protease Inhibitors (PI) treatments. The scope of the paper includes a proposed model of the dynamic system of HIV-1 infection in CD4 cells with RTI and PI as controls and a proposed objective function model that minimizes infected CD4+T Cells, the population of free virus and therapeutic costs. From the dynamics system model and objective function model, we designed an optimal control for HIV-1 infection control. In this paper, we obtained optimal control for RTI and PI therapies. The results of this paper are as follows: by using the optimal control approach, we obtained infectious control strategy that minimizes actively infected CD4+T Cells, the population of free virus and the cost of treatment. In other words, optimal control is a good approach in determining infection control strategies that minimizes the objective function.