Claim Missing Document
Check
Articles

Found 12 Documents
Search

FAST IMAGE RETRIEVAL BERBASIS LOCALITY SENSITIVE HASHING DAN CONVOLUTIONAL NEURAL NETWORK Tena, Silvester; Dwiandiyanta, Bernadectus Yudi; Ina, Wenefrida Tulit
Jurnal Media Elektro Vol 13 No 1 (2024): April 2024
Publisher : Universitas Nusa Cendana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35508/jme.v13i1.15137

Abstract

Image retrieval systems with a fast search process are still challenging for researchers. Fast search methods are one of the most important parts of image retrieval. One of the techniques used is reducing feature dimensions using the Locality Sensitivity Hashing (LSH) method. Apart from that, feature types and image extraction methods are selected. Image feature extraction uses the Convolutional Neural Network (CNN) method in this research. Measuring similarity using the Hamming Distance (HD) and Euclidean Distance (ED) methods. The datasets used are TenunIkatNet and Batik300. The LSH method forms a hash table as a bucket to group similar images based on probability and in the form of binary code. The research results show that the LSH+HD+ED method provides faster search results than ED. The image retrieval time for the LSH+HD+ED and ED methods is 0.252 seconds and 4.5 seconds, respectively, for the TenunIkatNet dataset. Meanwhile, the Batik300 dataset is 0.03 seconds and 0.9 seconds. Using the LSH method is very effective for large datasets. Retrieval accuracy using the LSH+HD+ED method was 99.705% and 84% for the TenunIkatNet and Batik300 datasets, respectively. Meanwhile, the ED method produces 94.17% and 82% retrieval accuracy, respectively.
KLASIFIKASI BENIH JAGUNG UNGGUL MENGGUNAKAN METODE MACHINE LEARNING K-NEAREST NEIGHBORS Seyk, Madeleine Nizara; Ina, Wenefrida Tulit; Djahi, Hendrik J.; Tena, Silvester
Jurnal Media Elektro Vol 13 No 2 (2024): Oktober 2024
Publisher : Universitas Nusa Cendana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35508/jme.v13i2.19054

Abstract

Classifying the quality of corn seeds by manual visual observation takes a long time. It also produces products with uneven quality due to visual limitations, fatigue, and differences in observer perception. This research aims to classify superior corn seeds using the machine learning method, namely K-Nearest Neighbors (K-NN). The research data uses 500 images of corn seeds consisting of 400 training images and 100 test images. Extraction of corn image features uses the Gray Level Co-occurrence Matrix (GLCM) method to obtain texture characteristics. The texture characteristic values ​​of metric natural corn images concist of contrast, energy, homogeneity and correlation. Based on the image texture characteristic values, classification is carried out using the K-Nearest Neighbor (K-NN) method. The classification results consist of classes of viable and non-viable corn seeds. The performance evaluation metric method calculates accuracy, sensitivity and specificity using a confusion matrix. This research shows that the value of k=5 is the most optimal, and the accuracy, sensitivity and sensitivity values, respectively, are 75%, 77% and 72% found in the ninth fold