Claim Missing Document
Check
Articles

Found 23 Documents
Search

The Pervious Concrete and Pervious Mortar as Water Filter in Decentralized Water Treatment– a Review Yogafanny, Ekha; Triatmadja, Radianta; Nurrochmad, Fatchan; Supraba, Intan
Journal of Geoscience, Engineering, Environment, and Technology Vol. 9 No. 1 (2024): JGEET Vol 09 No 01 : March (2024)
Publisher : UIR PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25299/jgeet.2024.9.1.14236

Abstract

Decentralized water treatment system is water treatment carried out by the community on a household-scale. One of the technologies that have been developed to gain freshwater is the pervious concrete filter (PCF). This study aims to provide the researchers with an understanding of the pervious concrete filter as a potential filter technology in water treatment. The method used is a literature review from several papers and reports related to pervious concrete from past to present. PCF is a filter made from a mixture of aggregate, cement, and water with a specific ratio. PCF has enough water and air permeability due to interconnected macro pores. Some properties such as porosity, permeability, and pores size determine the ability of PCF to remove the contaminants in the water. These properties were controlled mostly by the aggregate size, aggregate-cement ratio, water-cement ratio, etc. According to its characteristic, the PCF shows a prospect to be used as water filter mainly in a decentralized water treatment system. Besides, the understanding of PCF is a basis to develop a pervious mortar filter that slightly different in the aggregate sizes used in this composite.
A Novel Exact Solution of Longshore Current and Its Application on Permeable Groin Umar, Hasdinar; Assidiq, Fuad M.; Triatmadja, Radianta; Baeda, Achmad Y.
Civil Engineering Journal Vol 11, No 2 (2025): February
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2025-011-02-07

Abstract

One major environmental problem exacerbated by longshore currents is beach erosion. Groins are a common defense tactic built perpendicular to the shore. However, conventional impermeable groins promote downstream erosion and disrupt sediment movement. Permeable groins provide a more environmentally friendly option, allowing some sediment to flow through. This study examines the effects of permeable groins on longshore currents. Permeable groins are not included in currently used longshore current equations. This study fills this gap by creating a new longshore current velocity equation considering permeable groins. The longshore current equation with the groin was developed based on the momentum equation in the longshore direction without the influence of lateral mixing and the assumption that base friction will rise due to the groin. Therefore, it was determined that the base shear stress after the groin was equal to the base shear stress plus the drag caused by the groin. The result shows that the longshore current equation through the groin is a function of the breaking wave parameter and the resistance parameter owing to the groin. Longshore current velocities with and without permeable groins of different densities were measured in wave basins. We collected information on groin characteristics, current velocities, and breaking wave heights. This investigation validates the shortcomings of the current equations. Doi: 10.28991/CEJ-2025-011-02-07 Full Text: PDF
Preparedness of Tsunami Disaster in Pandeglang Region Due to The Activity of Mount Krakatau Ningtyas, Nadya Nur; Satyarno, Iman; Triatmadja, Radianta
INERSIA lnformasi dan Ekspose Hasil Riset Teknik Sipil dan Arsitektur Vol. 18 No. 2 (2022): December
Publisher : Universitas Negeri Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21831/inersia.v18i2.54054

Abstract

Pandeglang Regency is one of the areas with the most building damage in The 2018 Anak Krakatau Tsunami. The tsunami in 2018 was caused by the activity of Anak Krakatau Volcano in the form of an avalanche of material on the volcano's cliffs. The subdistricts in Pandeglang Regency affected by the tsunami were Carita Subdistrict, Labuan Subdistrict, and Panimbang Subdistrict. This research evaluates potential damage to buildings to determine the condition of the existing land, determines an evacuation route to a temporary evacuation site (TES), and simulates a tsunami evacuation using this evacuation route. Parameters of run-up height and building type are used as parameters for assessing building damage. The determination of TES is influenced by run-up height, elevation, and distance from the shoreline. Evacuation route planning and evacuation simulation are based on the assumed number of evacuees and the scenario of a tsunami evacuation. The results showed moderate damage to buildings in Carita Subdistrict, Labuan Subdistrict, and Panimbang Subdistrict. The examination of existing land as TES, namely Carita Vacant Land, Carita 1 Middle School, LDII Labuan Mosque, Labuan Shelter Building, Panimbang Vacant Land. According to the tsunami evacuation scenario during the day, evacuation time results for 25-30 minutes with an average speed of > 1 m/s. The tsunami evacuation time at night is free of obstacles or with obstacles for 50-85 minutes with an average speed of 1 m/s. The tsunami evacuation time at night is full of free and obstacle-free tours for 60-100 minutes with an average speed of 0.5 m/s. Evacuation time based on simulation results is compared with evacuation time calculated by ETA and other studies as data validation to determine the probability of community preparedness in the Pandeglang Regency. The preparedness community in Pandeglang Regency is in the ready category by 25% in the Carita subdistrict, Labuan subdistrict, and Panimbang Subdistrict.