Muhammad Sam'an
Department of Informatics, Universitas Muhammadiyah Semarang

Published : 19 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Indonesian Journal of Electrical Engineering and Computer Science

An improved light gradient boosting machine algorithm based on swarm algorithms for predicting loan default of peer-to-peer lending Much Aziz Muslim; Yosza Dasril; Muhammad Sam'an; Yahya Nur Ifriza
Indonesian Journal of Electrical Engineering and Computer Science Vol 28, No 2: November 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v28.i2.pp1002-1011

Abstract

Internet finance and big data technology are booming in the world. The launch of peer to peer (P2P) lending platforms is a sign and a great opportunity for entrepreneurs to easily increase their capital injection. However, this great opportunity has a high risk of impacting the sustainability and security development of the platform. One way to minimize loan risk is to predict the possibility of loan default. Hence, this study aims to find the best predictive model for predicting loan default of P2P Lending Club dataset. An improved light gradient boosting machine (LightGBM) via features selection by using swarm algorithms i.e. Ant colony optimization (ACO) and bee colony optimization (BCO) to the prediction analysis process. The best feature selection process is selected 6 out of 18 features. The synthetic minority oversampling technique (SMOTE) method is also provided to solve the unbalance class problem in the dataset, then a series of operations such as data cleaning and dimension reduction are performed. The experimental results prove that the LightGBM algorithm has been successfully improved. This success is shown by the prediction accuracy of LightGBM+ACO is 95.64%, LighGBM+BCO is 94.70% and LightGBM is 94.38%. This success also demonstrates outstanding performance in predicting loan default and strong generalizations.
Convolutional neural network hyperparameters for face emotion recognition using genetic algorithm Muhammad Sam'an; Safuan Safuan; Muhammad Munsarif
Indonesian Journal of Electrical Engineering and Computer Science Vol 33, No 1: January 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v33.i1.pp442-449

Abstract

The development of artificial intelligence in facial emotion recognition (FER) is rapidly growing and has been widely applied in various fields. Deep learning (DL) techniques with evolutionary algorithms have become the preferred choice for solving various security, health, gaming, and other related problems. This research proposes the use of a genetic algorithm (GA) as the main method to optimize hyperparameters in the convolutional neural network (CNN) model for FER. The required computation time is approximately 37 hours 57 minutes 55 seconds, with generation 3 taking the longest time at around 16 hours 45 minutes 4 seconds. However, generation 3 achieved an accuracy of 76.11%, which is the highest compared to other generations. The results indicate that the more generations are involved, the higher the achievable accuracy. Furthermore, the proposed CNN-GA model in this study outperforms previous models that have been examined. Thus, this study makes a significant contribution to improving the understanding of using GAs to optimize the performance of CNN models for FER.