Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Bulletin of Electrical Engineering and Informatics

Optimizing earthquake damage prediction using particle swarm optimization-based feature selection Anisa Sri Winarsih, Nurul; Anggi Pramunendar, Ricardus; Fajar Shidik, Guruh; Widjajanto, Budi; Syaifur Rohman, Muhammad; Oka Ratmana, Danny
Bulletin of Electrical Engineering and Informatics Vol 14, No 1: February 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v14i1.8421

Abstract

Earthquakes have destroyed the economy and killed many people in many countries. Emergency response actions immediately after an earthquake significantly reduce economic losses and save lives, so accurate earthquake damage predictions are needed. This research looks at how machine learning (ML) techniques are used to predict damage from earthquakes. The ML algorithms used are k-nearest neighbors (KNN), decision tree (DT), random forest (RF), and Naïve Bayes (NB). Feature selection is necessary, it needs to select the most relevant features from big data. One of the most commonly used algorithms to optimize ML is particle swarm optimization (PSO). PSO is also suitable for feature selection. This research compares various of PSO. Based on research, the RF algorithm with Phasor PSO has the highest fitness score. This process succeeded in reducing features from 38 features to 14 features. Based on the process after feature selection, it was found that the KNN, DT, and RF algorithms had improved. RF obtained the best accuracy, namely 72.989%. The processing time in DT, RF, and NB is faster than before. In conclusion, the ML algorithm can be combined with PSO feature selection to create a classification model that provides better performance than without feature selection.