Claim Missing Document
Check
Articles

Found 23 Documents
Search

Beberapa Sifat Modul Miskin Arif Munandar; Indah Emilia Wijayanti
Jurnal Fourier Vol. 9 No. 2 (2020)
Publisher : Program Studi Matematika Fakultas Sains dan Teknologi UIN Sunan Kalijaga Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Modul miskin adalah modul yang injektif relatif terhadap semua modul semisederhana. Dalam tulisan ini dibahas mengenai eksistensi dan pembentukan modul miskin. Berikutnya dibahas peranan dari modul injektif yang dapat digantikan oleh modul miskin dengan tambahan sifat tertentu. [A poor module defined to be a module which injective relative only to all semisimple modules. We give the existence of poor modules, how to form poor modules over any rings.The last, we discus about the role of injective module which can be replaced by poor module with some additional properties.]
On τ [M ]-Cohereditary Modules S Suprapto; Sri Wahyuni; Indah Emilia Wijayanti; I Irawati
Jurnal ILMU DASAR Vol 12 No 2 (2011)
Publisher : Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Jember

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (251.967 KB)

Abstract

Let R be a ring with unity and N a left R-module. Then N is said linearly independent to R (or N is R-linearly independent) if there exists a monomorphism φ : R(Λ) → N . We can define a generalization of linearly independency relative to an R-module M. N is called M-linearly independent if there exists a monomorphism φ:M(Λ) →N. Amodule  iscalled M-sublinearly independentif  is a factormodule of a module which is M-linearly independent. The set of M-sublinearly independent modules is denoted by τ [M ]. It is easy to see that τ [M ] is subcategory of category R-Mod. Furthermore, any submodule, factor module and external direct sum of module in τ [M ] are also in τ [M ]. A module is called τ [M ]-injective if it is P-injective, for all modules P in τ [M ]. Q is called τ [M ]-cohereditary if Q ∈τ [M ] and any factor module of Q is τ [M ]-injective. In this paper, we study the characterization of category τ [M ]-cohereditary modules. For any Q in τ [M ], Q is a τ [M ]-cohereditary if and only if every submodule of Q-projective module in τ [M ] is Q-projective. Moreover, Q is a τ [M ]-cohereditary if and only if every factor module of Q is a direct summand of module which contains this factor module. Also, we obtain some cohereditary properties of category τ [M ]. There are: for any R-modules P, Q. If Q is P-injective and every submodule of P is Q-projective, then Q is cohereditary (1); if P is Q-projective and Q is cohereditary, then every submodule of P is Q-projective (2); a direct product of modules which τ [M ]-cohereditary is τ [M ]-cohereditary (3). The cohereditary characterization and properties of category τ [M ] above is truly dual of characterization and properties of category τ [M ].
PRIMENESS IN CATEGORY OF MODULES AND CATEGORY OF COMODULES OVER CORINGS Indah Emilia Wijayanti
Journal of the Indonesian Mathematical Society Volume 14 Number 1 (April 2008)
Publisher : IndoMS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22342/jims.14.1.58.13-24

Abstract

We recall the notion of prie modules and use the analogue technique to define prime comodules and corings. Moreover, the related properties are of interest. We investigate the relation of primeness of C-comodule M and the dual algebra *C of a coring C, the relation to projectivity of a coring in the associated category, the implication of the primeness to the injective hull and product of prime coalgebras. DOI : http://dx.doi.org/10.22342/jims.14.1.58.13-24
ON FREE PRODUCT OF N-COGROUPS Indah Emilia Wijayanti
Journal of the Indonesian Mathematical Society Volume 18 Number 2 (October 2012)
Publisher : IndoMS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22342/jims.18.2.116.101-111

Abstract

looked at pdf abstractDOI : http://dx.doi.org/10.22342/jims.18.2.116.101-111
ON JOINTLY PRIME RADICALS OF (R,S)-MODULES Dian Ariesta Yuwaningsih; Indah Emilia Wijayanti
Journal of the Indonesian Mathematical Society Volume 21 Number 1 (April 2015)
Publisher : IndoMS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22342/jims.21.1.199.25-34

Abstract

Let $M$ be an $(R,S)$-module. In this paper a generalization of the m-system set of modules to $(R,S)$-modules is given. Then for an $(R,S)$-submodule $N$ of $M$, we define $\sqrt[(R,S)]{N}$ as the set of $a\in M$ such that every m-system containing $a$ meets $N$. It is shown that $\sqrt[(R,S)]{N}$ is the intersection of all jointly prime $(R,S)$-submodules of $M$ containing $N$. We define jointly prime radicals of an $(R,S)$-module $M$ as $rad_{(R,S)}(M)=\sqrt[(R,S)]{0}$. Then we present some properties of jointly prime radicals of an $(R,S)$-module.DOI : http://dx.doi.org/10.22342/jims.21.1.199.25-34
On Fully Prime Radicals Indah Emilia Wijayanti; Dian Ariesta Yuwaningsih
Journal of the Indonesian Mathematical Society Volume 23 Number 2 (October 2017)
Publisher : IndoMS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22342/jims.23.2.302.33-45

Abstract

In this paper we give a further study on fully prime submodules. For any fully prime submodules we define a product called $\am$-product. The further investigation of fully prime submodules in this work, i.e. the fully m-system and fully prime radicals, is related to this product. We show that the fully prime radical of any submodules can be characterize by the fully m-system. As a special case, the fully prime radical of a module $M$ is the intersection of all minimal fully prime submodules of $M$.
Non-Braid Graphs of Ring Zn Era Setya Cahyati; Rizka 'Abid Fadhiilah; Ananditya Dwi Candra Bp; Indah Emilia Wijayanti
JTAM (Jurnal Teori dan Aplikasi Matematika) Vol 6, No 1 (2022): January
Publisher : Universitas Muhammadiyah Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31764/jtam.v6i1.5559

Abstract

The research in graph theory has been widened by combining it with ring. In this paper, we introduce the definition of a non-braid graph of a ring.  The non-braid graph of a ring R, denoted by YR, is a simple graph with a vertex set R\B(R), where B(R) is the set of x in R such that  xyx=yxy for all y in R.  Two distinct vertices x and y are adjacent if and only if xyx not equal to yxy.  The method that we use to observe the non-braid graphs of Zn is by seeing the adjacency of the vertices and its braider.  The main objective of this paper is to prove the completeness and connectedness of the non-braid graph of ring Zn. We prove that if n is a prime number, the non-braid graph of Zn is a complete graph. For all n greater than equal to 3,  the non-braid graph of Zn is a connected graph.
Setiap Modul merupakan Submodul dari Suatu Modul Bersih Kartika Sari; Indah Emilia Wijayanti
Jurnal Matematika Integratif Vol 11, No 1: April, 2015
Publisher : Department of Matematics, Universitas Padjadjaran

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (363.707 KB) | DOI: 10.24198/jmi.v11.n1.9395.65-74

Abstract

Diberikan ring R dengan elemen satuan. Suatu ring R dikatakan bersih apabila setiap elemennya dapat dinyatakan dalam bentuk jumlahan suatu elemen unit dan suatu elemen idempoten dari ring R, sedangkan suatu R-modul M dikatakan bersih apabila ring endomorfismanya merupakan ring bersih. Berdasarkan sifat bahwa modul kontinu merupakan modul bersih, dalam penelitian ini ditunjukkan bahwa setiap modul merupakan submodul dari suatu modul bersih.
Pullback dan Pushout di Kategori Modul Topologis Yunita Septriana Anwar; Indah Emilia Wijayanti; Budi Surodjo; Dewi Kartika Sari
Jurnal Matematika Integratif Vol 18, No 1: April 2022
Publisher : Department of Matematics, Universitas Padjadjaran

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24198/jmi.v18.n1.37640.81-90

Abstract

A pullback of two morphisms with a common codomain $f\colon A\to C$ and $g\colon B\to C$ is the limit of a diagram consisting $f$ and $g$. The dual notion of a pullback is called a pushout. A pushout of two morphisms with a common domain $k\colon A\to B$ and $l\colon A\to C$ is the colimit of a diagram consisting $k$ and $l$. The pullback and the pushout of two morphisms need not exists. In this paper, we constructed a pullback and a pushout of two morphism in category of topological modules. A pullback of two continuous homomorphisms $f\colon A\to C$ and $g\colon B\to C$ in category of topological modules is a diagram that contains $A\times _{C} B=\{(a,b)\in A\times B \mid f(a)=g(b)\}\subset A\times B$ with the subspace topology on $A\times _{C} B$. Furthermore, the pushout of two continuous homomorphisms $k\colon A\to B$ and $l\colon A\to C$ in category of topological modules is a diagram that contains $B\bigoplus_{A} C=(B\bigoplus C)/\sim$ where $\sim$ is the smallest equivalence relation containing the pairs $(k(a),l(a))$ for all $a\in A$ and topology on $B\bigoplus C$ is coproduct topology $\tau_{coprod}$
DIAMETER DAN GIRTH GRAF NILPOTEN RING MATRIKS Fibriyanti, Regita Agustin Wahyu; Wijayanti, Indah Emilia
Journal of Fundamental Mathematics and Applications (JFMA) Vol 5, No 2 (2022)
Publisher : Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/jfma.v5i2.15576

Abstract

Diberikan suatu graf sederhana $G$. Diameter graf $G$ merupakan jarak terbesar sebarang dua titik $u,v$ di $G$. \textit{Girth} graf $G$ adalah panjang sikel terpendek di graf $G$. Misalkan $R$ suatu ring dengan elemen satuan. $N(R)$ merupakan himpunan nilpoten di $R$. ${Z_N}(R)$ merupakan himpunan semua $x$ di $R$ dengan $xy$ nilpoten pada $R$, untuk $y$ di $R^*$. Graf nilpoten, ${\Gamma _N}(R)$, merupakan graf dengan himpunan titiknya adalah ${Z_N}{(R)^ * }$, dan dua titik yang berbeda $x,y$ bertetangga jika dan hanya jika $xy$ nilpoten di $R$. Pada tulisan ini diberikan beberapa karakterisasi terkait diameter dan \textit{girth} graf nilpoten pada ring matriks atas lapangan $F$. Diberikan lapangan $F$, diameter graf $\left( {{\Gamma _N}\left( {{M_n}\left( F \right)} \right)} \right)$ adalah $2$, untuk $n \geq 3$ dan diameter graf $\left( {{\Gamma _N}\left( {{M_2}\left( F \right)} \right)} \right)$ adalah $3$. Serta jika $F$ suatu lapangan dan $n \geq 2$, maka girth graf $\left( {{\Gamma _N}\left( {{M_n}\left( F \right)} \right)} \right)$ adalah $3$.