A ring is a mathematical structure composed of a set with two binary operations that follow certain axioms. One important function within a ring is the centralizing and commuting mapping, which has been extensively studied in recent decades. Commuting mappings are a special case of centralizing mappings. A module is a generalization of a ring. In this paper, we extend the concept of commuting mappings from ring to module structures. However, defining commuting mappings in modules presents a challenge, as multiplication is required for their definition, yet modules do not have this operation. Additionally, constructing nonzero centralizing and commuting mappings on modules is a nontrivial task. To address these challenges, we employ the concept of idealization as a framework for defining commuting mappings in modules. We also propose a method for constructing nonzero commuting mappings on modules by leveraging existing commuting mappings in rings. Specifically, if α is a commuting mapping on a ring T, then a corresponding commuting mapping α’ can be defined on the module by utilizing α. Moreover, we establish that the finite sum of commuting mappings is also a commuting mapping and that a linear combination of commuting mappings is also a commuting mapping under certain conditions.