Claim Missing Document
Check
Articles

Found 37 Documents
Search

PENGARUH BEBAN TERHADAP PREDIKSI UMUR FATIK DUDUKAN (BRACKET) AC OUTDOOR MENGGUNAKAN METODE ELEMEN HINGGA LASINTA ARI NENDRA WIBAWA
JURNAL CRANKSHAFT Vol 3, No 1 (2020): Jurnal Crankshaft Vol.3 No.1 Maret 2020
Publisher : Universitas Muria Kudus

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24176/crankshaft.v3i1.4320

Abstract

The study examines the effect of the load on fatigue life prediction of an outdoor AC bracket using the finite element method. Outdoor AC bracket design uses Autodesk Inventor Professional 2017, while finite element analysis uses Ansys Workbench. The outdoor AC bracket is subjected to a load of 20, 25, 30, and 35 kg with a fully-reserved type of loading. Gerber's mean stress theory is used to predict fatigue life. The outdoor AC bracket material uses Aluminum alloy 5052. The simulation results show that the outdoor AC bracket has a minimum fatigue life for loads of 20, 25, 30, and 35 kg, respectively is 1 x 108, 1.49 x 107, 1.93 x 106, and 6.64 x 105 cycles. Whereas the safety factor for minimum fatigue life for loads of 20, 25, 30, and 35 kg is 1.65; 1.32; 1.10; and 0.58. It shows the outdoor AC bracket can withstand the fatigue life of up to a minimum of 106 cycles for loads of 20, 25, and 30 kg because it has a safety factor of more than 1. While the 35 kg load of outdoor AC bracket fails to reach a minimum fatigue life of 106 cycles due to fatigue life prediction is only reached 6.64 x 105 cycles with a safety factor of less than 1, which is 0.58.
DESAIN DAN ANALISIS KEKUATAN DUDUKAN (BRACKET) AC OUTDOOR MENGGUNAKAN METODE ELEMEN HINGGA Lasinta Ari Nendra Wibawa
JURNAL CRANKSHAFT Vol 2, No 1 (2019): Jurnal Crankshaft Vol.2 No.1 Maret 2019
Publisher : Universitas Muria Kudus

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24176/crankshaft.v2i1.2688

Abstract

Penelitian ini mengkaji tentang perancangan dan analisis kekuatan dudukan AC outdoor menggunakan metode elemen hingga. Analisis dilakukan menggunakan software Autodesk Inventor Professional 2017. Variabel beban AC outdoor yang diterima oleh masing-masing dudukan AC yaitu 156,96; 176,58; 196,2 , dan 215,82 N. Hasil simulasi menunjukkan untuk berat AC Outdoor 156,96; 176,58; 196,2, dan 215,82 N memiliki faktor keamanan berturut-turut yaitu 2,559; 2,275; 2,047, dan 1,861.
PENGARUH PEMILIHAN MATERIAL TERHADAP KEKUATAN RANGKA MAIN LANDING GEAR UNTUK PESAWAT UAV: EFFECT OF MATERIAL SELECTION ON THE STRENGTH OF THE MAIN LANDING GEAR FRAME FOR UAV AIRCRAF Lasinta Ari Nendra Wibawa
Jurnal Teknologi dan Terapan Bisnis Vol. 2 No. 1 (2019): Vol 2 No 1 (2019): Jurnal Teknologi dan Terapan Bisnis
Publisher : UPPM Akademi Komunitas Semen Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.0301/jttb.v2i1.60

Abstract

This study examined the effect of material selection on the strength of the main landing gear frame for UAV aircraft using the finite element method. Linear static analysis was carried out using Autodesk Inventor Professional 2017 software. Main landing gear frame using Aluminum 5052-H38, Aluminium 5083 87 Cold Formed, Aluminium 6061, and CFRP. UAV aircraft was weighing 85 kg with a landing speed of 10 m/s and impact time of 0,5 second. The simulation results show that the landing gear frames of the lightest in a row were CFRP, Al 5083 87 Cold Formed, Al 5052-H38, and Al 6061. Materials that have the greatest safety factor were CFRP, Al 5083 87 Cold Formed, Al 6061, and Al 5052-H38.
Pengaruh Jumlah Ulir dan Variasi Beban terhadap Kekuatan Sambungan Cap dan Tabung Roket Dextrose Menggunakan Metode Elemen Hingga Lasinta Ari Nendra Wibawa; Adi Farmasiantoro Farmasiantoro; Abdilah Hasan Hasan; Diyat Muhdiyat Muhdiyat; Iyus Rusyana Rusyana; Yopiek Kristiyana Kristiyana; Unggul Satrio Yudhotomo
Journal of Mechanical Engineering Vol 5, No 2 (2021): Journal of Mechanical Engineering
Publisher : Universitas Tidar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31002/jom.v5i2.5277

Abstract

Kajian ini bertujuan untuk meneliti pengaruh jumlah ulir dan variasi beban terhadap kekuatan sambungan cap dan tabung roket Dextrose menggunakan metode elemen hingga. Cap dan tabung roket menggunakan Al 6063-T5. Ulir yang digunakan yaitu jenis ulir persegi dengan variasi jumlah ulir 5 dan 6 buah. Pembebanan divariasikan 4, 5, 6, dan 7 kN. Analisis elemen hingga dilakukan dengan bantuan software Ansys Workbench. Hasil simulasi tegangan statis menunjukkan semakin besar pembebanan, maka semakin tinggi tegangan von Mises maksimum. Tegangan von Mises maksimum menurun seiiring peningkatan jumlah ulir. Sambungan ulir persegi dengan variasi jumlah ulir 5 dan 6 dapat menahan beban statis hingga 6 kN karena memiliki faktor keamanan lebih dari 1,25.
PENGARUH PEMILIHAN MATERIAL TERHADAP KEKUATAN RANGKA MAIN LANDING GEAR UNTUK PESAWAT UAV: EFFECT OF MATERIAL SELECTION ON THE STRENGTH OF THE MAIN LANDING GEAR FRAME FOR UAV AIRCRAF Lasinta Ari Nendra Wibawa
Jurnal Teknologi dan Terapan Bisnis Vol. 2 No. 1 (2019): Vol 2 No 1 (2019): Jurnal Teknologi dan Terapan Bisnis
Publisher : Program Studi Teknologi Informasi

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (421.698 KB) | DOI: 10.0301/jttb.v2i1.60

Abstract

This study examined the effect of material selection on the strength of the main landing gear frame for UAV aircraft using the finite element method. Linear static analysis was carried out using Autodesk Inventor Professional 2017 software. Main landing gear frame using Aluminum 5052-H38, Aluminium 5083 87 Cold Formed, Aluminium 6061, and CFRP. UAV aircraft was weighing 85 kg with a landing speed of 10 m/s and impact time of 0,5 second. The simulation results show that the landing gear frames of the lightest in a row were CFRP, Al 5083 87 Cold Formed, Al 5052-H38, and Al 6061. Materials that have the greatest safety factor were CFRP, Al 5083 87 Cold Formed, Al 6061, and Al 5052-H38.
Pengaruh diameter baut terhadap kekuatan rangka main landing gear pesawat UAV menggunakan metode elemen hingga Lasinta Ari Nendra Wibawa
Jurnal POLIMESIN Vol 17, No 1 (2019): Februari
Publisher : Politeknik Negeri Lhokseumawe

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30811/jpl.v17i1.828

Abstract

Penelitian ini mengkaji tentang pengaruh diameter baut terhadap kekuatan rangka main landing gear untuk pesawat UAV menggunakan metode elemen hingga. Analisis statik linear dilakukan menggunakan software Autodesk Inventor Professional 2017. Material rangka main landing gear menggunakan Aluminium paduan 5083. Pesawat UAV memiliki berat 75 kg dengan kecepatan landing 10 m/s dan waktu impak 0,5 detik. Variabel diameter baut yaitu 11 mm, 12 mm, 13 mm, dan 14 mm. Hasil simulasi menunjukkan bahwa tegangan Von Mises untuk diameter baut 11 mm, 12 mm, 13 mm, dan 14 mm berturut-turut yaitu 82,092 MPa, 85,113 MPa, 85,141 MPa, dan 85,340 MPa. Nilai deformasi untuk diameter baut 11 mm, 12 mm, 13 mm, dan 14 mm berturut-turut yaitu 2,173 mm, 2,185 mm, 2,194 mm, dan 2,204 mm. Nilai faktor keamanan untuk diameter baut 11 mm, 12 mm, 13 mm, dan 14 mm berturut-turut yaitu 3,472, 3,349, 3,347, dan 3,340. Dari hasil simulasi dapat disimpulkan bahwa diameter baut terbaik adalah berukuran 11 mm. Kata kunci:  Aluminium 5083, Autodesk Inventor 2017, Analisis Elemen Hingga, Main Landing Gear, Diameter Baut AbstractThis study examined the effect of bolt diameter on the strength of the main landing gear frame for UAV aircraft using the finite element method. Linear static analysis was carried out using the Autodesk Inventor Professional 2017 software. Main landing gear frame using Aluminum alloy 5083. UAV aircraft weighed 75 kg with a landing speed of 10 m / s and an impact time of 0.5 seconds. Variables of bolt diameter were 11 mm, 12 mm, 13 mm and 14 mm. The simulation results show that Von Mises stress for bolt diameters 11 mm, 12 mm, 13 mm, and 14 mm were 82.092 MPa, 85.113 MPa, 85.141 MPa and 85.340 MPa respectively. Deformation values for bolt diameters of 11 mm, 12 mm, 13 mm, and 14 mm respectively were 2.173 mm, 2.185 mm, 2.194 mm and 2.204 mm. The safety factor values for bolt diameters were 11 mm, 12 mm, 13 mm, and 14 mm respectively, which are 3.472, 3.349, 3.347, and 3.340. From the simulation results it can be concluded that the best bolt diameter was 11 mm in size. Keywords: Aluminum 5083, Autodesk Inventor 2017, Finite Element Analysis, Main Landing Gear, Bolt Diameter 
DESIGN AND STRESS ANALYSIS OF RX-122 ROCKET MOTOR TUBE USING NUMERICAL METHOD Wibawa, Lasinta Ari Nendra; Rusyana, Iyus; Koswara, Dinar; Nugraha, Gagan; Muhdiyat, Diyat; Irawan, Dedi
Jurnal Rekayasa Mesin Vol. 15 No. 3 (2024)
Publisher : Jurusan Teknik Mesin, Fakultas Teknik, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/jrm.v15i3.1663

Abstract

The RX-122 rocket is an experimental rocket series developed by the Technology Centre for Rocket-BRIN. The lightweight design of the RX-122 rocket motor tube is an essential requirement for improving the rocket's flight performance. The objective of this research is to identify a rocket motor tube design that offers both safety and minimal weight. A total of 12 different design configurations for the rocket motor tube are examined using numerical methods assisted by Ansys software. Aluminium 6061-T6 material was chosen to withstand an internal operating pressure load of 10.5 MPa. The design involves examining a range of wall thickness options, including 4 and 5 mm, cap thickness options of 15 and 20 mm, and fillet radii of 10, 15, and 20 mm. This approach provides a comprehensive and systematic method to achieve optimal structural performance under operational stress conditions, ensuring that only safe yet lightweight configurations are selected. This evaluation, which integrates the exploration of wall, cap, and fillet dimensions, offers an innovative framework to optimize the balance between safety and weight. The findings indicate that only the 12th design, featuring a wall thickness, cap thickness, and fillet radius of 5, 20, and 20 mm, satisfies the specified criteria. The method demonstrates a practical advantage in refining rocket design with high efficiency and accuracy, reducing trial-and-error in experimental setups.