Claim Missing Document
Check
Articles

Found 34 Documents
Search

Analisis Tren dan Prediksi Penjualan Restoran Menggunakan Model Time Series Prophet Hidayat, Kiki; Witanti, Wina; Ramadhan, Edvin
METIK JURNAL (AKREDITASI SINTA 3) Vol. 9 No. 2 (2025): METIK Jurnal
Publisher : LPPM Universitas Mulia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47002/gd8y7q29

Abstract

Daily sales forecasting is a critical component of business planning that must adapt to the dynamics of market demand. While traditional approaches such as Single Moving Average and Trend Moment have been used in previous studies, their predictive accuracy on daily sales often remains suboptimal, with reported MAPE values up to 39.2%. Prophet, a time series model developed by Meta, offers enhanced flexibility in capturing non-linear trends, seasonality, and incorporating external regressors. This study proposes a hybrid forecasting model by combining Prophet with engineered features and external regressors, including calendar effects and recent sales statistics. The dataset consists of daily sales records that have undergone data cleaning, logarithmic transformation, and smoothing. Prophet is configured with additional monthly seasonality, national holiday indicators, and optimized parameters through grid search. Evaluation results demonstrate a substantial improvement, with the final model achieving an R² score of 0.9787 and a MAPE of 3.79%, outperforming conventional methods and aligning with the best results from recent Prophet-based studies. These findings confirm that the integration of external variables within Prophet significantly improves prediction accuracy, making it suitable for time series forecasting in various business domains with similar data patterns.
Livestock Population Map Based on Provinces in Indonesia Using the K-Medoids Method Nurhakim, Riri Qorib; Witanti, Wina; Komarudin, Agus
Journal La Multiapp Vol. 6 No. 5 (2025): Journal La Multiapp
Publisher : Newinera Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37899/journallamultiapp.v6i5.2411

Abstract

Indonesia is one of the countries with a large livestock population. A healthy and stable livestock population can affect the production and availability of livestock products, such as meat, milk, eggs, and skin. FAO's Domestic Animal Diversity - Information System (DAD-IS) data (2020) recorded around 206 large farms, small farms, poultry and pigs. Clustering is a technique for grouping data without unknown class labels. Clustering is used to find data that has similarities. The clustering technique is to determine the initial cluster center. This study is intended to determine the best cluster value using the selected method. The purpose of this study is to create a system that can process and group data. With data obtained from the central statistics agency. This study uses the topic of Livestock Population Map in Indonesia using K-Medoids. The algorithm used in this study is K-Medoids. The K-Medoids method is a variation of the K-Means method to retrieve k data, the number of clusters in a data set with n objects. There are several processes carried out in this study including collecting data, then entering the preprocessing stage, grouping data that has similarities between data. After clustering using K-Medoids, it was found that Cluster 0 had 3 provinces with the highest average population with types of livestock such as Dairy cattle, Beef cattle, Sheep and Goats, Cluster 1 had 29 provinces with the lowest average population, Cluster 2 had 2 provinces with the highest average number for types of livestock such as Buffalo, Horse and Pig.
Pembangunan Sistem Customer Relationship Management (Crm) Pada Pt. Fazypcare Putri, Ika Rahmah; Witanti, Wina; Umbara, Fajri Rakhmat
Semnas Ristek (Seminar Nasional Riset dan Inovasi Teknologi) Vol 5, No 1 (2021): SEMNAS RISTEK 2021
Publisher : Universitas Indraprasta PGRI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30998/semnasristek.v5i1.5049

Abstract

PT. FazyPCare merupakan perusahaan yang bergerak dibidang jasa service laptop&PC. Saat ini sebagian besar kegiatan pada perusahaan masih menggunakan sistem lama yaitu pelanggan datang langsung ke perusahaan dan menyerahkan laptop/komputer yang akan di service lalu mencatat jadwal servicenya. Pada sistem lama perusahaan tidak dapat melakukan hubungan secara terus-menerus kepada pelanggan. Hal ini menimbulkan masalah dikarenakan pelanggan tidak dapat membantu pemasaran produk yang dimilikiperusahaan, pelanggan tidak terpantau oleh perusahaan dan akhirnya terjadi penurunan penghasilan dari perusahaan karena terjadinya persaingan, dengan munculnya perusahaan – perusahaan serupa yang baru berdiri dengan kualitas yang baik. Penelitian ini bertujuan untuk membangun sebuah Customer Relationship Management (CRM) yang berbasis website pada PT. FazyPCare agar dapat menjalin hubungan yang baik dan meningkatkan pelayanannya kepada client. Penelitian ini bertujuan untuk menghasilkan sebuah Sistem Customer Relationship Management (CRM) berbasis website. Dengan adanya sistem ini PT. FazyPCare dapat menjalin hubungan yang berkelanjutan, menampung keluhan client, dan dapat meningkatkan layanannya kepada client agar tidak kalah bersaing dengan perusahaan sejenis lainnya.
Pengontrolan Lampu Lalu Lintas Menggunakan Teknologi Deteksi Kendaraan YOLOV4 Wahidin, Farhan Raihan; Witanti, Wina; Ramadhan, Edvin
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 12 No 5: Oktober 2025
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2025125

Abstract

Deteksi kendaraan adalah aspek kunci dalam pengontrolan lalu lintas yang efisien. Kemacetan lalu lintas bisa terjadi salah satunya akibat pengaturan durasi lampu lalu lintas yang tidak disesuaikan dengan volume kendaraan pada saat itu. Penelitian ini bertujuan mengembangkan sistem pengontorlan lampu lalu lintas adaptif yang menyesuaikan durasi lampu berdasarkan volume kendaraan yang terdeteksi menggunakan YOLOv4, yang dapat mengatasi kekurangan pada sistem pengontrolan lalu lintas konvensional dan mengurangi kemacetan serta meningkatkan efisiensi lalu lintas. Tahapan penelitian dimulai dengan mengumpulkan data video lalu lintas dari CCTV (Closed Circuit Television) yang dipasang di berbagai lokasi strategis untuk mendapatkan gambaran lengkap tentang kondisi lalu lintas. Data tersebut kemudian dianalisis menggunakan algoritma YOLOv4 (You Only Look Once v4) untuk mendeteksi kendaraan secara real-time. YOLOv4 dipilih karena keunggulannya dalam efisiensi dan akurasi deteksi kendaraan secara real-time. Setelah data deteksi kendaraan terkumpul, data tersebut diintegrasikan dengan sistem lampu lalu lintas. Algoritma ini dirancang untuk mengintegrasikan data deteksi kendaraan secara real-time dan menyesuaikan durasi lampu lalu lintas berdasarkan jumlah kendaraan. Selanjutnya simulasi sistem menggunakan library pygame dilakukan untuk mengevaluasi kinerja algoritma di berbagai kondisi lalu lintas. Hasil penelitian menunjukkan bahwa penggunaan YOLOv4 dalam sistem pengontrolan lampu lalu lintas adaptif secara signifikan mengurangi kemacetan. Model YOLOv4 menunjukkan akurasi rata-rata tertinggi sebesar 78% dalam deteksi kendaraan di jalan kedua dengan kualitas video yang cukup baik. Penggunaan YOLOv4 dalam pengontrolan lampu lalu lintas menunjukkan peningkatan efisiensi dan responsivitas terhadap tingkat kepadatan lalu lintas sedang, dengan pengurangan durasi lampu hijau berkisar antara 53% hingga 86%.   Abstract Vehicle detection is a key aspect of efficient traffic control. Traffic congestion can occur, in part, due to traffic light duration settings that are not adjusted according to the volume of vehicles at a given time. This study develops an adaptive traffic light control system that adjusts the duration of the lights based on the detected vehicle volume, aiming to address the shortcomings of conventional traffic control systems and reduce congestion while improving traffic efficiency.The research began with collecting traffic video data from CCTV (Closed Circuit Television) installed at various strategic locations to get a comprehensive overview of traffic conditions. The data was then analyzed using the YOLOv4 (You Only Look Once v4) algorithm for real-time vehicle detection. YOLOv4 was chosen for its advantages in efficiency and accuracy in real-time vehicle detection. Once the vehicle detection data was collected, it was integrated with the traffic light system. The algorithm was designed to integrate real-time vehicle detection data and adjust the traffic light duration based on the number of vehicles. A simulation of the system was then conducted using the Pygame library to evaluate the algorithm's performance under various traffic conditions. The study results showed that the use of YOLOv4 in adaptive traffic light control systems significantly reduced congestion. The YOLOv4 model demonstrated the highest average accuracy of 78.93% in vehicle detection on the second road with fairly good video quality. The use of YOLOv4 in traffic light control showed increased efficiency and responsiveness to moderate traffic density, with a reduction in green light duration ranging from 53% to 86%.