An analysis is conducted to address the growing threats of data theft and unauthorized manipulation in digital transactions by integrating \structures within hash chain systems using hybrid cryptography techniques, specifically Rivest-Shamir-Adleman (RSA) and advanced encryption standard (AES) algorithms. This approach leverages AES for efficient symmetric data encryption and RSA for secure key exchanges, while the hash chain framework ensures that each data block is cryptographically linked to its predecessor, reinforcing system integrity. The Merkle tree structure plays a crucial role by allowing precise and rapid detection of unauthorized data changes. Empirical analyses demonstrate notable improvements in both the efficiency of cryptographic processes and the robustness of data validation, underscoring the method’s applicability in high data throughput environments such as educational institutions. This research makes a substantive contribution to information security by offering a sophisticated solution that strengthens data protection practices, ensuring greater resilience against increasingly sophisticated data threats.