Claim Missing Document
Check
Articles

Found 13 Documents
Search

Enhancing Diesel Backup Power Forecasting With LSTM, GRU, and Autoencoder-based Input Encoding Dewi, Ni Putu Novita Puspa; Leu, Yungho; Mustofa, Khabib; Riasetiawan, Mardhani
Jurnal Nasional Pendidikan Teknik Informatika: JANAPATI Vol. 14 No. 1 (2025)
Publisher : Prodi Pendidikan Teknik Informatika Universitas Pendidikan Ganesha

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23887/janapati.v14i1.92079

Abstract

Ensuring a reliable electricity supply is crucial for Indonesia's development. This study applies deep learning to forecast diesel backup power output. One challenge in such predictions is balancing the input sequence length and the number of features to avoid overly long input sequences, which may degrade model performance. To address this, we utilized an autoencoder to compress the input sequence, improving prediction accuracy. Additionally, given the time-consuming nature of hyper-parameter optimization in deep learning, we employed Bayesian optimization to streamline the process and achieve optimal hyper-parameter settings.The study compares a General Regression Neural Network (GRNN) optimized by FOA with Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) models optimized by Gaussian Process (GP). Results show that LSTM and GRU with encoded inputs outperform their non-encoded counterparts. The GRU, combined with an autoencoder and Bayesian-optimized hyper-parameters, achieves the lowest prediction error, demonstrating superior forecasting capability.The dataset, obtained from evaluated feeders in Kapuas District, Central Kalimantan, covers hourly power generation and distribution from October 2017 to September 2018. Data was split into 11 months for training and 1 month for testing, with the training set further divided into 70% training and 30% validation. The best performing model achieved RMSE and MAE values of 27.5824 and 14.9804, respectively. Future research may explore further optimization, feature selection techniques, and extended dataset variations.
Analisis Sistem Manajemen Aset Tetap Pada Sektor Publik Berdasarkan Framework Asset Management Landscape Syafaat Ali Akbar; Mardhani Riasetiawan; Achmad Djunaedi
Management Studies and Entrepreneurship Journal (MSEJ) Vol. 6 No. 3 (2025): Management Studies and Entrepreneurship Journal (MSEJ)
Publisher : Yayasan Pendidikan Riset dan Pengembangan Intelektual (YRPI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37385/msej.v6i3.7537

Abstract

Pengendalian manajemen aset tetap berperan penting untuk mewujudkan efisiensi anggaran belanja modal. Penelitian ini bertujuan untuk melakukan evaluasi terhadap sistem manajemen aset tetap pada tingkat satuan kerja di Kementerian Keuangan berdasarkan salah satu standar manajemen aset internasional yakni Asset Management Landscape dan merekomendasikan inovasi kebijakan guna meningkatkan kualitas sistem manajemen aset tetap. Pendekatan yang digunakan dalam penelitian ini adalah mixed methods. Hasil evaluasi tingkat kematangan subjek manajemen aset terhadap empat belas subjek manajemen pada Asset Management Landscape yang menjadi fokus penelitian menunjukan bahwa subjek asset management planning dan maintenance delivery telah mencapai level competent, sedangkan dua belas subjek lainnya berada pada level developing. Berdasarkan interpretasi lebih lanjut terhadap tingkat kematangan manajemen aset, didapatkan tiga tingkatan subjek manajemen aset. Subjek manajemen aset yang berada pada tingkatan terbawah dari tiga tingkatan tersebut sehingga perlu menjadi perhatian utama dalam rangka meningkatkan kualitas sistem manajemen aset tetap pada tingkat satuan kerja di Kementerian Keuangan adalah data & information management, asset information strategy, management of change dan asset operation. Inovasi kebijakan yang direkomendasikan untuk meningkatkan kualitas empat subjek manajemen aset yang berada pada tingkatan terbawah adalah pengembangan sistem manajemen aset tetap dengan menggunakan Radio Frequency Identification (RFID). Penggunaan RFID dalam sistem manajemen aset tetap bermanfaat untuk meningkatkan aspek akurasi data dalam pelacakan aset tetap dan juga meningkatkan aspek pengamanan aset tetap.
Analisis Topik dan Aktor pada Diskusi GeNose C19 Budiansyah, Andi; Riasetiawan, Mardhani; Djunaedi, Achmad; Rachim, Ilmi Afrizal
Jurnal ILMU KOMUNIKASI Vol. 21 No. 1 (2024)
Publisher : Departemen Ilmu Komunikasi FISIP Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24002/jik.v21i1.7020

Abstract

The GeNose C19 has rised a discussion on Twitter. This study seeks to analyze and categorize topics and actors who have a significant role in spreading knowledge on the usage of GeNose C19 on Twitter between March 1st, 2020, and December 20th, 2021. The findings of this study include various topic, namely pertaining to its mechanisms and operations, superiority, marketing approval, user experience, and product comparison. Actors who played a significant role in spreading knowledge were players from the media, colleges, and government. In addition, state-owned companies play an important part in distributing technical knowledge to the public.