Claim Missing Document
Check
Articles

Found 19 Documents
Search

Spatial Regression Analysis to See Factors Affecting Food Security at District Level in South Sulawesi Province Safitri, Irma Yani; Tiro, Muhammad Arif; Ruliana
ARRUS Journal of Mathematics and Applied Science Vol. 2 No. 2 (2022)
Publisher : Lembaga Penelitian dan Pengembangan Teknologi dan Rekayasa, Yayasan Ahmar Cendekia Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35877/mathscience740

Abstract

Spatial regression is a development of classical linear regression which is based on the influence of place or location. To determine the location/spatial effect, a spatial dependency test was performed using the Moran Index, and the Lagrange Multiplier (LM) test was used to determine a significant spatial regression model. In this study, spatial regression was applied to the case of food security in each district in South Sulawesi Province. The results of the analysis show that there is a negative spatial autocorrelation, meaning that the spatial effect does not affect the level of food security. The significant spatial regression model is the SEM (Spatial Error Model) model. The equation of the SEM model produces variables that have a significant effect, namely the ratio of normative consumption per capita to net availability, percentage of population living below the poverty line, percentage of households with a proportion of expenditure on food more than 65 percent of total expenditure, percentage of households without access to electricity, percentage of households without access to clean water, life expectancy at birth, ratio of population per health worker to the level of population density, the average length of schooling for women above 15 years, and the percentage of children under five with height below standard (stunting). Thus, the resulting distribution pattern is a uniform data pattern. This means that each adjacent district tends to have different characteristics.
Comparison of k-Nearest Neighbor (k-NN) and Support Vector Machine (SVM) Methods for Classification of Poverty Data in Papua Fauziah; Tiro, Muhammad Arif; Ruliana
ARRUS Journal of Mathematics and Applied Science Vol. 2 No. 2 (2022)
Publisher : Lembaga Penelitian dan Pengembangan Teknologi dan Rekayasa, Yayasan Ahmar Cendekia Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35877/mathscience741

Abstract

Classification is a job of assessing data objects to include them in a particular class from a number of available classes. The classification method used is the k-Nearest Neighbor (k-NN) and Support Vector Machine (SVM) methods. The data used in this study is data on poverty in Papua with the category of the number of low/high level poor people. Of the 29 regencies/cities that were sampled, 15 regencies/cities represent the number of low-level poor people and 14 districts/cities are the number of high-level poor people. The results of the analysis obtained are the k-Nearest Neighbor (k-NN) method with a value of k=15 producing an accuracy of 58.62%, while the Support Vector Machine (SVM) method with Parameter cost = 1 using the RBF kernel produces an accuracy value. by 93.1%. The classification criteria to find the best method is to look at the Root Mean Square Error (RMSE) which states that the Support Vector Machine (SVM) method is better than the k-Nearest Neighbor (k-NN) method.
RELATIVE RISK OF CORONAVIRUS DISEASE (COVID-19) IN SOUTH SULAWESI PROVINCE, INDONESIA: BAYESIAN SPATIAL MODELING Aswi, Aswi; Mauliyana, Andi; Tiro, Muhammad Arif; Bustan, Muhammad Nadjib
MEDIA STATISTIKA Vol 14, No 2 (2021): Media Statistika
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/medstat.14.2.158-169

Abstract

The Covid-19 has exploded in the world since late 2019. South Sulawesi Province has the highest number of Covid-19 cases outside Java Island in Indonesia. This paper aims to determine the most suitable Bayesian spatial conditional autoregressive (CAR) localised models in modeling the relative risk (RR) of Covid-19 in South Sulawesi Province, Indonesia. Bayesian spatial CAR localised models with different hyperpriors were performed adopting a Poisson distribution for the confirmed Covid-19 counts to examine the grouping of Covid-19 cases. All confirmed cases of Covid-19 (19 March 2020-18 February 2021) for each district were included. Overall, Bayesian CAR localised model with G = 5 with a hyperprior IG (1, 0.1) is the preferred model to estimate the RR based on the two criteria used. Makassar and Toraja Utara have the highest and the lowest RR, respectively. The group formed in the localised model is influenced by the magnitude of the mean and variance in the count data between areas. Using suitable Bayesian spatial CAR localised models enables the identification of high-risk areas of Covid-19 cases. This localised model could be applied in other case studies.
Pelatihan Penulisan Artikel Ilmiah Internasional dan Tata Kelola Referensi dengan Mendeley Aswi, Aswi; Tiro, Muhammad Arif; Poerwanto, Bobby
SMART: Jurnal Pengabdian Kepada Masyarakat Vol 4, No 2 (2024): Oktober
Publisher : Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Makassar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35580/smart.v4i2.63563

Abstract

Tujuan dari kegiatan ini adalah untuk meningkatkan pengetahuan dosen dan mahasiswa STIKES Fatima Parepare dalam menyusun artikel ilmiah untuk jurnal internasional, dan meningkatkan keterampilan dalam menggunakan Mendeley sebagai alat pengelolaan referensi. Kegiatan ini diikuti oleh 27 orang yang berasal dari dosen dan mahasiswa. Pelaksanaan kegiatan ini dimulai dari observasi, identifikasi kebutuhan, pelatihan, pendampingan, serta monitoring dan evaluasi. Hasil dari kegiatan ini adalah peningkatan pengetahuan dan keterampilan pada topik yang dibahas. Selain itu, sekitar 66,6% peserta merasakan pengetahuan dan keterampilannya meningkat secara signifikan. Artinya kegiatan yang dilakukan memberikan dampak kepada peserta sehingga setelah narasumber meninggalkan lokasi kegiatan terjadi sharing ilmu antar peserta sehingga peserta yang belum banyak berkembang juga dapat memahami dan mengimplementasikan materi yang telah diberikan. Peningkatan keterampilan ini diharapkan dapat membantu dosen dan mahasiswa dalam penyusunan artikel ilmiah internasional, proposal penelitian, proposal bantuan pendanaan seperti hibah penelitian dan pengabdian DRTPM, hibah PKM mahasiswa, PPK Ormawa, P2MW atau proposal tugas akhir mahasiswa.Kata Kunci: Artikel Ilmiah, Jurnal Internasional, Mendeley
MAKING BAYESIAN DISEASE MAPPING EASY AND INTERACTIVE: AN R SHINY APPLICATION Aswi, Aswi; Tiro, Muhammad Arif; Sudarmin, Sudarmin; Sukarna, Sukarna; Awi, Awi; Nurwan, Nurwan; Cramb, Susanna
MEDIA STATISTIKA Vol 16, No 2 (2023): Media Statistika
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/medstat.16.2.148-159

Abstract

Spatial analysis of count data is important in epidemiology and other domains to identify spatial patterns. While Bayesian spatial models are a popular approach, they do require detailed knowledge of the process for model fitting, checking, and visualising results. Although a number of R packages are available to simplify running the model, there are still complexities when checking the model. This paper aims to provide a user-friendly and interactive R Shiny web application for the analysis of spatial data using Bayesian spatial Conditional Autoregressive Leroux models. The web application is built with the integration of the R packages shiny and CARBayes. The required data are the number of cases, population, and optionally some covariates for each region. In this case, we used Covid-19 data in 2021 in South Sulawesi province, Indonesia. This application enables fitting a Bayesian spatial CAR Leroux model under several hyperpriors and selecting the most appropriate through comparing several goodness of fit measures. The application also enables checking convergence, plus obtaining and visualising in an interactive map the relative risk of disease for each region.
Spatial Regression Analysis to See Factors Affecting Food Security at District Level in South Sulawesi Province Safitri, Irma Yani; Tiro, Muhammad Arif; Ruliana
ARRUS Journal of Mathematics and Applied Science Vol. 2 No. 2 (2022)
Publisher : PT ARRUS Intelektual Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35877/mathscience740

Abstract

Spatial regression is a development of classical linear regression which is based on the influence of place or location. To determine the location/spatial effect, a spatial dependency test was performed using the Moran Index, and the Lagrange Multiplier (LM) test was used to determine a significant spatial regression model. In this study, spatial regression was applied to the case of food security in each district in South Sulawesi Province. The results of the analysis show that there is a negative spatial autocorrelation, meaning that the spatial effect does not affect the level of food security. The significant spatial regression model is the SEM (Spatial Error Model) model. The equation of the SEM model produces variables that have a significant effect, namely the ratio of normative consumption per capita to net availability, percentage of population living below the poverty line, percentage of households with a proportion of expenditure on food more than 65 percent of total expenditure, percentage of households without access to electricity, percentage of households without access to clean water, life expectancy at birth, ratio of population per health worker to the level of population density, the average length of schooling for women above 15 years, and the percentage of children under five with height below standard (stunting). Thus, the resulting distribution pattern is a uniform data pattern. This means that each adjacent district tends to have different characteristics.
Comparison of k-Nearest Neighbor (k-NN) and Support Vector Machine (SVM) Methods for Classification of Poverty Data in Papua Fauziah; Tiro, Muhammad Arif; Ruliana
ARRUS Journal of Mathematics and Applied Science Vol. 2 No. 2 (2022)
Publisher : PT ARRUS Intelektual Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35877/mathscience741

Abstract

Classification is a job of assessing data objects to include them in a particular class from a number of available classes. The classification method used is the k-Nearest Neighbor (k-NN) and Support Vector Machine (SVM) methods. The data used in this study is data on poverty in Papua with the category of the number of low/high level poor people. Of the 29 regencies/cities that were sampled, 15 regencies/cities represent the number of low-level poor people and 14 districts/cities are the number of high-level poor people. The results of the analysis obtained are the k-Nearest Neighbor (k-NN) method with a value of k=15 producing an accuracy of 58.62%, while the Support Vector Machine (SVM) method with Parameter cost = 1 using the RBF kernel produces an accuracy value. by 93.1%. The classification criteria to find the best method is to look at the Root Mean Square Error (RMSE) which states that the Support Vector Machine (SVM) method is better than the k-Nearest Neighbor (k-NN) method.
Statistika Kategorik untuk Siswa: Meningkatkan Ketajaman Analisis dalam Karya Tulis Ilmiah Aswi, Aswi; Tiro, Muhammad Arif; Poerwanto, Bobby; Ikhwana, Nur; Rais, Zulkifli; Abidin, Muh. Zulkifli
SMART: Jurnal Pengabdian Kepada Masyarakat Vol 5, No 2 (2025): Oktober
Publisher : Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Makassar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35580/smart.v5i2.77214

Abstract

Tujuan dari kegiatan ini adalah untuk meningkatkan kamampuan analisis data guru dan siswa SMAN 7 Takalar khususnya dalam mengolah dan menganalisis data kualitatif atau kategorik dalam menyusun karya tulis ilmiah. Kegiatan ini diikuti oleh 18 orang siswa. Pelaksanaan kegiatan ini dimulai dari observasi, identifikasi kebutuhan, pelatihan, pendampingan, serta monitoring dan evaluasi. Hasil dari kegiatan ini adalah peningkatan pengetahuan dan keterampilan pada topik yang dibahas. Selain itu, sekitar 83,33% peserta merasakan pengetahuan dan keterampilannya meningkat secara signifikan. Artinya kegiatan yang dilakukan memberikan dampak kepada peserta sehingga setelah narasumber meninggalkan lokasi kegiatan terjadi sharing ilmu antar peserta sehingga peserta yang belum banyak berkembang juga dapat memahami dan mengimplementasikan materi yang telah diberikan. Peningkatan keterampilan ini diharapkan dapat membantu siswa dalam penyusunan karya tulis ilmiah.
Evaluasi Performa Model Regresi Poisson Tweedie dan Conway Maxwell Poisson dalam Menangani Masalah Dispersi: Studi Angka Kematian Ibu di Provinsi Sulawesi Selatan Aswi, Aswi; Sanusi, Wahidah; Tiro, Muhammad Arif; Sukarna, Sukarna; Haekal, Muh. Fahri; Palarungi, Andi Gagah; Putri, Siti Choirotun Aisyah; Oktaviana, Oktaviana
Indonesian Journal of Fundamental Sciences Vol 11, No 2 (2025)
Publisher : Universitas Negeri Makassar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26858/ijfs.v11i2.77506

Abstract

Model regresi Poisson digunakan untuk menganalisis hubungan antara satu atau lebih variabel independen dengan variabel dependen berupa data cacahan. Salah satu asumsi utamanya adalah kesamaan antara nilai mean dan variansi (equidispersi). Namun, dalam praktiknya, asumsi tersebut sering tidak terpenuhi. Kondisi ini menyebabkan model regresi Poisson kurang sesuai digunakan, karena dapat menghasilkan estimasi standar error yang terlalu kecil (underestimate). Model alternatif yang dapat digunakan untuk mengatasi masalah overdispersi adalah Regresi Poisson Tweedie dan Conway Maxwell Poisson (CMP). Penelitian ini bertujuan untuk mengevaluasi kinerja model regresi Poisson Tweedie dan regresi CMP dalam menangani masalah dispersi pada data Angka Kematian Ibu (AKI) di Provinsi Sulawesi Selatan, Indonesia. Estimasi parameter dilakukan dengan metode Estimasi Kemungkinan Maksimum (MLE), sedangkan kinerja model dinilai berdasarkan Akaike Information Criterion (AIC), Mean Square Error (MSE), dan signifikansi parameter. Hasil penelitian menunjukkan bahwa model regresi Poisson standar kurang sesuai karena adanya pelanggaran asumsi ekuidispersi. Sebaliknya, model CMP dan Poisson Tweedie memberikan alternatif yang lebih tepat, dimana Model CMP menunjukkan akurasi prediktif yang lebih tinggi dengan nilai MSE terendah. Faktor perdarahan, hipertensi, gangguan kardiovaskular, dan komplikasi pasca-aborsi ditemukan memiliki pengaruh yang signifikan terhadap kematian ibu, sementara infeksi tidak signifikan secara statistik.