Claim Missing Document
Check
Articles

Found 32 Documents
Search

TES FORMAL MODUL PROJEKTIF DAN MODUL BEBAS ATAS RING OPERATOR DIFERENSIAL Na'imah Hijriati
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 5, No 1 (2011): JURNAL EPSILON VOLUME 5 NOMOR 1
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (257.347 KB) | DOI: 10.20527/epsilon.v5i1.69

Abstract

Suppose,,,,] 1 2 3 [n D  K d d d d d d linear differential operators with coefficients in K, which satisfy  a K; he = adi + ia. D is a linear differential carrier ring with the following properties: D not loading the divisor is zero, not commutative, and for every d d D i j, , i, j  1, , n and for every a, b  K apply i j i j i j ad (bd)  abd d  a ( b) d. Let M be a top module D formed from an ordinary differential linear system (OD) time-varying or partial differential linear (PD) system under control. Indicates M a projective module or a free module is used a formal test. The formal tests used are heavily dependent on characteristics of the module, ie For the projective module, the formal test used depends on kesurjektifan of the operator. As for the free module must be over a major ideal area.
METODE DEKOMPOSISI LAPLACE UNTUK MENENTUKAN SOLUSI PERSAMAAN DIFERENSIAL PARSIAL NONLINIER Sinar Ismaya; Yuni Yulida; Naimah Hijriati
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 10, No 1 (2016): JURNAL EPSILON VOLUME 10 NOMOR 1
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (301.029 KB) | DOI: 10.20527/epsilon.v10i1.56

Abstract

Partial differential equations are grouped into two parts: linear and nonlinear differential equations. Many natural phenomena are modeled in the form of nonlinear partial differential equations, such as K-dV and Burger equations. To be able to explain natural phenomena in the form of nonlinear partial differential equations required approach method which can then be applied to determine the solution of partial differential equation. One of the methods used to determine the solution of nonlinear differential equations is Laplace Decomposition Method which combines Laplace Transformation theory and Adomian Decomposition Method. This research is conducted by using literature method with the following procedure: Assessing Non-Linear Partial Differential Equation, Method Adomian Decomposition, Laplace Transformation and Laplace Decomposition Method; then determine the settlement of the non-linear differential equation with the Laplace Decomposition Method. The result of this research is obtained by solution of nonlinear partial differential equation of Order one by using Laplace decomposition method that is 0nnuu∞ == Σ with (????????, ????????) = ℒ-1????1????????ℒ {???????? (????????, ????????)} + 1????????ℎ (????????) ???? and ???????????????? + 1 (????????, ????????) = ℒ-1????-1????????ℒ {???????????? ???????? (????????, ????????) } -1????????ℒ {????????????????} ????; ????????≥0 and on the two-order nonlinear partial differential equation is 0nnuu = = Σ with ????????0 (????????, ????????) = ℒ-1????1????????2ℒ {???????? (????????, ????????)} + 1????????ℎ (????????) + 1????????2???????? (????????) ???? and ???????????????? + 1 (????????, ????????) = ℒ-1????-1????????2ℒ {???????????? ???????? (????????, ????????)} - 1????????2ℒ {????????????????} ????; ????????≥0
SIFAT-SIFAT MODUL SOFT Ridha Mahmudah; Na'imah Hijriati
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol. 16(2), 2022
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20527/epsilon.v16i2.7121

Abstract

Suatu himpunan tak kosong disebut modul atas suatu ring dengan elemen satuan jika himpunan tersebut merupakan grup komutatif yang tertutup terhadap perkalian skalar yang memenuhi beberapa aksioma. Kombinasi dari konsep modul dengan himpunan soft menghasilkan modul soft. Konsep ini diperkenalkan oleh Sun, Zhang dan Lui pada tahun 2008. Himpunan soft atas suatu himpunan semesta adalah pasangan berurut dari fungsi dan himpunan parameter. Fungsi dari himpunan soft ini adalah pemetaaan dari himpunan parameter ke himpunan kuasa semesta. Jika himpunan semesta dari himpunan soft ini merupakan  suatu modul dan image dari fungsi yang membentuk himpunan soft merupakan submodul, maka himpunan soft ini disebut modul soft. Penelitian ini bertujuan untuk membuktikan hasil operasi irisan, operasi gabungan, jumlah langsung dan hasilkali dari beberapa modul soft merupakan modul soft dan hasil dari homomorfisma modul yang dikomposisikan dengan modul soft merupakan modul soft. Penelitian ini diawali dengan membuktikan sifat operasi irisan, operasi gabungan, jumlah langsung, dan hasilkali pada modul soft. Kemudian, penelitian ini membuktikan sifat pada submodul soft. Selanjutnya, berdasarkan sifat dari submodul soft, dibuktikan sifat modul soft terkait dengan homomorfisma modul. Kesimpulan  dari penelitian ini adalah hasil dari operasi irisan, gabungan, jumlah langsung dan hasilkali dari beberapa modul soft merupakan modul soft. Lebih lanjut, penelitian ini diperoleh juga bahwa hasil dari homomorfisma modul yang dikomposisikan dengan modul soft menghasilkan modul soft.
SIFAT-SIFAT KOSET FUZZY DARI SUBGRUP FUZZY SUATU GRUP Muhammad Rifaldy Yanwar; Saman Abdurrahman; Na'imah Hijriati
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol. 16(2), 2022
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20527/epsilon.v16i2.6943

Abstract

Konsep himpunan fuzzy digunakan untuk mempresentasikan suatu permasalahan yang sulit dinyatakan melalui himpunan tegas. Kemudian, penelitiaan konsep himpunan fuzzy dikombinasikan dengan bidang aljabar yang melahirkan konsep aljabar fuzzy. Penelitian aljabar fuzzy salah satunya adalah grup fuzzy. Dari penelitian ini memberikan ide bagi peneliti lainnya, yaitu seperti meneliti koset fuzzy dan terbentuknya grup faktor dari subgrup normal fuzzy. Koset fuzzy pada penelitian terbaru berupa koset kiri fuzzy, koset kanan fuzzy, dan koset tengah fuzzy. Tujuan penelitian ini adalah membuktikan sifat-sifat koset kiri fuzzy, koset kanan fuzzy dan koset tengah fuzzy, serta mengkaji hubungan pada koset kiri fuzzy dan koset kanan fuzzy dengan koset tengah fuzzy dari subgrup fuzzy suatu grup. Prosedur penelitian ini diawali dengan mempelajari konsep dasar yang digunakan dalam penelitian ini. Kemudian, dengan menggunakan konsep dasar tersebut, dibuktikan sifat-sifat koset kiri fuzzy, koset kanan fuzzy dan koset tengah fuzzy. Selanjutnya, mengkaji hubungan pada koset kiri fuzzy dan koset kanan fuzzy dengan koset tengah fuzzy pada subgrup fuzzy suatu grup. Hasil penelitian ini adalah pada subgrup fuzzy atas grup abelian, koset kiri fuzzy merupakan koset kanan fuzzy. Setiap subgrup fuzzy atas sebarang grup,  dengan  elemen identitas. Pada penelitian ini diperoleh juga syarat cukup dan syarat perlu kesamaan dua koset kiri (koset kanan) yang terbentuk dari dua subgrup fuzzy atas grup yang sama ataupun atas grup abelian yang sama, serta syarat cukup dan syarat perlu kesamaan dua koset tengah yang terbentuk dari dua subgrup fuzzy atas grup yang sama
Pelatihan Pembuatan Penelitian Tindakan Kelas di SMPN 14 Banjarbaru Saman Abdurrahman; Lilis Harianti Hasibuan; Mochammad Idris; Na’ímah Hijriati; Juwita Lasterina; Sheryn Amelia Puteri; Gusti Muhammad Rosyadi; Audinta Sakti Firmansyah; Nor Hidayati
Jurnal Pengabdian Pada Masyarakat Vol 7 No 4 (2022): Jurnal Pengabdian Pada Masyarakat
Publisher : Universitas Mathla'ul Anwar Banten

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (459.4 KB) | DOI: 10.30653/002.202274.201

Abstract

CLASSROOM ACTİON RESEARCH-MAKING TRAİNİNG IN SMPN 14 BANJARBARU. Classroom Action Research is practical research intended to improve classroom learning. This research is one of the efforts of teachers or practitioners in the form of various activities carried out to improve and or improve the quality of learning in the classroom. Classroom Action Research can be interpreted as a process of studying learning problems in the classroom through self-reflection to solve these problems by carrying out various planned actions in real situations and analyzing any effects of the treatment. Classroom Action Research is one of the scientific publications in the context of sustainable teacher professional development aimed at improving and improving the quality of learning processes and outcomes or the quality of education in general. The article describes the implementation of Classroom Action Research Assistance Activities and Scientific Article Writing at SMPN 14 Banjarbaru, South Kalimantan. This activity is important because it can stimulate the creativity of teachers to conduct Classroom Action Research. The benefit of this activity is that teachers become more and more skilled in choosing or making appropriate learning methods for their students from time to time. Another impact of this activity can certainly improve teacher careers to a higher level.
SIFAT ELEMENTER DARI RING TERGENERALISASI Rosyadi, Gusti Muhammad; Hijriati, Na'imah
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN (EPSILON: JOURNAL OF PURE AND APPLIED MATHEMATICS) Vol 18, No 1 (2024)
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20527/epsilon.v18i1.12619

Abstract

Ring is a study of algebraic structures, which is defined as a non-empty set containing two binary operations. Regarding the first binary operation, the set is a group, and the second binary operation is a semigroup, and both operations fulfill the left distributive and right distributive properties. The generalized ring concept is an extension of the ring concept, namely that for the first binary operation, each element has an identity element that is not necessarily the same. This research aims to prove the elementary properties of generalized rings and the properties of generalized rings associated with the G-ring structure. Furthermore, this research also proves the properties of subsets related to identity elements in generalized rings. The results of this research are that the fundamental properties of the generalized ring are valid, which are analogous to the fundamental properties of the ring, and sufficient conditions for a generalized ring to be a G-ring are obtained. Furthermore, if the generalized ring has a unit element, it forms an abelian group with all elements having the same identity, and the generalized ring contains all identity elements.
Pendampingan Pembuatan Suplemen Bahan Ajar Matematika dan Penelitian Tindakan Kelas di MGMP Matematika SMA/MA Kabupaten Tanah Laut Idris, Mochammad; Lestia, Aprida Siska; Abdurrahman, Saman; Hijriati, Na’ímah; Lissa, Hermei; Gunawan, I Wayan Ari; Amalia, Zharfa Rizqi; Andriani, Asfia
Jurnal Pengabdian Pada Masyarakat Vol 9 No 2 (2024): Jurnal Pengabdian Pada Masyarakat
Publisher : Universitas Mathla'ul Anwar Banten

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30653/jppm.v9i2.664

Abstract

Pasca pandemi Covid-19, institusi pendidikan berbenah kembali dengan mengatur ulang pelaksanaan kurikulumnya. Hal ini menuntut guru berinovasi dalam mengembangkan keterampilannya. Guru sebagai salah satu sumber belajar menjadi tumpuan peserta didiknya dalam mencari informasi dan penjelasan, terutama mengenai kesulitan dalam memahami materi pelajaran, khususnya pelajaran matematika di tingkat SLTA. Tim Pengabdian Kepada Masyarakat (PKM) dari Program Studi Matematika FMIPA Universitas Lambung Mangkurat (ULM) berinisiatif mengajak mitra yaitu forum Musyawarah Guru Mata Pelajaran (MGMP) Matematika SMA/MA Kabupaten Tanah Laut Kalimantan Selatan dalam kegiatan PKM dengan peserta guru anggota MGMP tersebut. Tujuannya untuk meningkatkan inovasi guru dalam pembelajaran siswa dan dapat menerbitkan artikel ilmiah pada jurnal nasional. Metode yang digunakan dalam kegiatan ini berupa diskusi dan sharing dengan materi tentang pembuatan suplemen pelajaran matematika, teknis dalam Penelitian Tindakan Kelas (PTK), dan pengenalan metode statistika untuk analisis data. Pelaksanaan kegiatan berlangsung dengan lancar dan sesuai harapan. Para peserta memberikan apresiasi yang baik dan bersemangat untuk membuat PTK serta menyusun materi tambahan dalam pelajaran matematika. Harapan selanjutnya, peserta didik dari anggota MGMP dapat bertambah wawasan dan semakin meningkat kualitas hasil belajarnya. After the Covid-19 pandemic, educational institutions have reorganized their curriculum implementation. This requires teachers to innovate in developing their skills. Teachers as one of the sources of learning become the focus of their students in seeking information and explanations, especially regarding difficulties in understanding subject matter, especially mathematics lessons at the high school level. The Community Service Team (PKM) from the Mathematics Study Program FMIPA Lambung Mangkurat University (ULM) took the initiative to invite partners, namely the forum for the High School Mathematics Teacher Consultation (MGMP) in Tanah Laut Regency, South Kalimantan, in PKM activities with teacher participants from the MGMP. The goal is to increase teacher innovation in student learning and be able to publish scientific articles in national journals. The method used in this activity is in the form of discussion and sharing with material on making math lesson supplements, techniques in Classroom Action Research (PTK), and introduction to statistical methods for data analysis. The implementation of the activity went smoothly and as expected. The participants gave good appreciation and were eager to make PTK and compile additional materials in math lessons. The next hope is that students from MGMP members can gain more insight and improve the quality of their learning outcomes.
SOMBOR INDEX AND ITS GENERALIZATION OF POWER GRAPH OF SOME GROUP WITH PRIME POWER ORDER Pratama, Rendi Bahtiar; Maulana, Fariz; Hijriati, Na'imah; Wardhana, I Gede Adhitya Wisnu
Journal of Fundamental Mathematics and Applications (JFMA) Vol 7, No 2 (2024)
Publisher : Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/jfma.v7i2.22552

Abstract

Graphs are an intriguing topic of discussion due to their numerous applications, particularly in chemistry. Topological indices derived from graph representations of molecules enable us to predict various properties of these compounds, including their physical characteristics, chemical reactivity, biological activity, toxicity, and atom-to-atom interactions. More recently, graphs have also been utilized to depict abstract mathematical objects such as groups. A notable example of graph representation in group theory is seen in power graphs. This research explores new graph topological indices based on vertex degrees, inspired by the Euclidean metric, particularly the Sombor index, and its application to the power graph of the integer modulo group and the dihedral group. The primary outcome of this study is the derivation of a general formula for the Sombor index and its generalization.
LEVEL SOFT GROUP AND ITS PROPERTIES Abdurrahman, Saman; Idris, Mochammad; Faisal, Faisal; Hijriati, Na’imah; Thresye, Thresye; Lestia, Aprida Siska
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 19 No 3 (2025): BAREKENG: Journal of Mathematics and Its Application
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/barekengvol19iss3pp2263-2274

Abstract

In this paper, we present an application of fuzzy subset and fuzzy subgroup to a soft set and a soft group, thereby creating a soft set and a soft group within the same group. Furthermore, we refer to the soft and soft groups as level soft sets and level soft groups. We also found out the level of soft sets and the operations on soft sets, such as intersection, union, and subset. We also examine what conditions a fuzzy subgroup and a soft group must meet to form a level soft group. Moreover, we scrutinize the properties of operations on a soft set, specifically intersection, union, and AND, and apply them to the level soft group to ascertain if they consistently produce a level soft group over the same set. Furthermore, we investigate the formation of a level soft and level soft group resulting from the homomorphism of the group and soft group. The research findings can enrich studies on the relationships between structures in fuzzy subgroups and soft groups and the application of soft group levels in further research.
Application of a permutation group on sasirangan pattern Hijriati, Na'imah; Susanti, Dewi Sri; Nooriman, Raihan; Setiawan, Geofani
Desimal: Jurnal Matematika Vol. 4 No. 3 (2021): Desimal: Jurnal Matematika
Publisher : Universitas Islam Negeri Raden Intan Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24042/djm.v4i3.10338

Abstract

A permutation group is a group of all permutations of some set. If the set that forms a permutation group is the n-first of natural number, then a permutation group is called a symmetry group. There is another type of group, i.e., a cyclic group and a dihedral group, and they are a subgroup of a symmetry group by numbering the vertices of the polygon. Sasirangan is the traditional batik from the South Kalimantan. There are 18 traditional patterns. All the patterns make some polygon. Because of this, the purpose of this research is to investigate the type of group that forms the patterns of Sasirangan. First, the authors give the procedure to investigate the patterns of Sasirangan, then use that procedure to the patterns of Sasirangan. The result of this research is the patterns of Sasirangan form cyclic groups C_1  and C_2, and dihedral groups D_2, D_4, D_5 and D_8.