Claim Missing Document
Check
Articles

Found 12 Documents
Search

Implementation of a K-Means-Based Intelligent Patient Complaint Clustering System to Identify Handling Priorities Ideal, M. Agung vafky; Nurfiah; Idir Fitriyanto
Knowbase : International Journal of Knowledge in Database Vol. 5 No. 1 (2025): June 2025
Publisher : Universitas Islam Negeri Sjech M. Djamil Djambek Bukittinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30983/knowbase.v5i1.9529

Abstract

Patient complaints are the body’s response to health disturbances, triggered by internal factors such as genetics or external ones like the living environment. Understanding these causes allows community health centers (puskesmas) to take more effective preventive measures and design more targeted services. This study utilizes patient complaint data sourced from medical records, which include biodata and medical history, as well as complaint details that form the research subject. The main goal of this study is to develop an intelligent system that can generate clusters of patient complaints using the K-Means Clustering algorithm. The system is developed using the Research and Development (RnD) method. The clustering process applies a data mining approach, producing clusters based on patient complaints. A total of 600 complaint records, categorized into 72 distinct types, were used. The output consists of three clusters: C1 (high intensity) with 24 categories, C2 (moderate intensity) with 14 categories, and C3 (low intensity) with 34 categories. A practicality test yielded a score of 0.81, indicating the system is highly practical, while an effectiveness test by medical staff scored 0.88, showing the system is highly effective. This system enables health centers to identify trending complaints in the community and develop more focused prevention and treatment strategies. The clustering results also serve as a valuable foundation for strategic decision-making in disease control.
Perancangan Sistem Informasi Monitoring Praktek Kerja Lapangan dengan Menggunakan Metode Waterfall Ideal, M. Agung Vafky; Rasyid, M; Yuda, Fitra
Jurnal KomtekInfo Vol. 11 No. 4 (2024): Komtekinfo
Publisher : Universitas Putra Indonesia YPTK Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35134/komtekinfo.v11i4.595

Abstract

Monitoring Praktek Kerja Lapangan (PKL) di SMKN 1 Tanah Putih saat ini masih dilakukan secara manual, yang menyulitkan guru pembimbing dalam memantau lokasi PKL siswa. Jarak lokasi Dunia Usaha (DU) siswa yang jauh dan pencatatan kegiatan harian siswa yang masih manual membuat data rentan hilang dan rusak. Berdasarkan permasalahan ini, penulis merancang Sistem Informasi Monitoring PKL (SIMPKL) yang bertujuan memudahkan guru pembimbing dalam melakukan monitoring serta menyediakan tempat penyimpanan data kegiatan harian PKL siswa. Dalam pembuatan sistem ini, penulis menggunakan metode waterfall yang meliputi tahapan: communication, planning, modelling, construction, dan deployment . Berdasarkan hasil penelitian, penulis berhasil mengembangkan SIMPKL dengan validitas yang diuji oleh ahli komputer, menghasilkan nilai 0,87. Uji praktikalitas yang dilakukan oleh pembimbing menunjukkan produk ini sangat praktis dengan nilai 83,26. Uji efektivitas yang dilakukan pada siswa menunjukkan bahwa produk ini sangat efektif dengan nilai 0,89. Dengan demikian, SIMPKL berhasil memudahkan guru pembimbing dalam melakukan monitoring dan menyediakan penyimpanan data yang aman untuk kegiatan harian PKL siswa.