Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Journal Of Artificial Intelligence And Software Engineering

Interpreting Lung Disease Detection from Chest X-rays Using Layer-wise Relevance Propagation (LRP) Fauziyyah, Laila Nurul; Negara, Benny Sukma; Irsyad, Muhammad; Iskandar, Iwan; Yanto, Febi
Journal of Artificial Intelligence and Software Engineering Vol 5, No 2 (2025): Juni On-Progress
Publisher : Politeknik Negeri Lhokseumawe

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30811/jaise.v5i2.7043

Abstract

Penelitian ini mengusulkan pendekatan klasifikasi penyakit paru berbasis citra X-ray menggunakan arsitektur VGG16 yang dilengkapi metode interpretabilitas Layer-wise Relevance Propagation (LRP). Dataset terdiri dari tiga kelas: COVID-19, pneumonia, dan normal, yang diproses melalui augmentasi dan normalisasi. Model dilatih dengan rasio data 70:30, learning rate 0.001, batch size 32, dan optimizer Adam. Hasil pelatihan menunjukkan akurasi tinggi sebesar 96,78% dengan nilai precision, recall, dan F1-score yang seimbang. Metode LRP digunakan untuk menyoroti area penting pada citra yang berkontribusi terhadap prediksi model, sehingga meningkatkan transparansi keputusan. Kontribusi utama penelitian ini adalah integrasi VGG16 dengan LRP dalam klasifikasi multi-kelas citra X-ray, yang memberikan hasil akurat sekaligus interpretasi visual yang mendukung kepercayaan dalam aplikasi medis.
Lung Disease Detection Using Gradient-Weighted Class Activation Mapping (Grad-CAM) Sofiyah, Wan; Negara, Benny Sukma; Irsyad, Muhammad; Iskandar, Iwan; Yanto, Febi
Journal of Artificial Intelligence and Software Engineering Vol 5, No 2 (2025): Juni On-Progress
Publisher : Politeknik Negeri Lhokseumawe

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30811/jaise.v5i2.7041

Abstract

Early detection of respiratory diseases such as Coronavirus Disease-19 (Covid-19) and Pneumonia is crucial for accelerating treatment and preventing more serious complications. This study proposes a method for classifying Chest X-ray (CXR) images using a Convolutional Neural Network (CNN) to distinguish between Covid-19, Pneumonia, and normal lungs. Model training involved exploring various hyperparameter combinations to find the optimal configuration. The best results were achieved with a learning rate of 0.001, 50 epochs, and a batch size of 32, yielding an accuracy of 96.33%. Evaluation was conducted using accuracy, precision, recall, F1-score, and confusion matrix metrics. This study uses Gradient-Weighted Class Activation Mapping (Grad-CAM) as a transparent interpretation tool for model decisions. The main contribution of this study is the application of Grad-CAM in multi-class CXR classification to enhance model interpretability in lung disease diagnosis.