Claim Missing Document
Check
Articles

Found 7 Documents
Search

Implementation of Inverse Kinematic and Trajectory Planning on 6-DOF Robotic Arm for Straight-Flat Welding Movement Muhammad Arif Nur Huda; Sugeng Hadi Susilo; Pribadi Mumpuni Adhi
Logic : Jurnal Rancang Bangun dan Teknologi Vol. 22 No. 1 (2022): March
Publisher : Unit Publikasi Ilmiah, P3M, Politeknik Negeri Bali

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2518.069 KB) | DOI: 10.31940/logic.v22i1.51-61

Abstract

Robotic arms have been used in various processes such as for moving goods, welding, assembling, and painting. In the case of welding and painting, it is necessary to move the end-effector robot accurately and smoothly to follow the specified trajectory. In robotic arm control, 2 things are important to be analyzed and implemented in controlling the motion of the robotic arm, namely inverse kinematic and trajectory planning. In this study, the inverse kinematic and trajectory planning algorithms are implemented to the robotic arm controller in the form of an Arduino Mega 2560 microcontroller. The inverse kinematic solution uses geometric and algebraic analytical methods. while the trajectory planning method is using LSPB (Linear Segment Parabolic Blend) Trajectory in Cartesian Space. Data retrieval is done by giving 2 input coordinates of the desired position and orientation, then the data in the form of the joint angle value will be measured using a rotary encoder as an angle sensor. Furthermore, the joint angle measurement value is converted in cartesian coordinates to get the end-effector position. Data analysis is done by comparing the data value of each joint angle with the calculated value so that the error value appears. The results showed that the inverse kinematic and trajectory planning algorithms were successfully applied to the 6-DOF robotic arm to perform straight-flat welding movements. Inverse kinematic testing on both input coordinates, the average error value for joints 2, 3, and 5 is 1.82º, 1.26º, and 2.08º. Meanwhile, the average error of the end-effector position at the x and z coordinates is 2.08 mm and 12.9 mm, respectively. Then for the trajectory planning test, the error value for the end-effector position in the x and z coordinates is 2.25 mm and 10.7 mm.
Performance Evaluation of Motorcycle Racing Cast Wheels Under Dynamic Load Using Finite Element Method with Aluminum Material Agus Dwi Putra; Diama Rizky Septiawan; Yayi Febdia Pradani; Nicko Nur Rakhmaddian; Muhammad Arif Nur Huda
G-Tech: Jurnal Teknologi Terapan Vol 9 No 1 (2025): G-Tech, Vol. 9 No. 1 January 2025
Publisher : Universitas Islam Raden Rahmat, Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.70609/gtech.v9i1.6166

Abstract

The racing cast wheel made of aluminum 6061-T6 is a critical component in motor vehicles, particularly in supporting performance, safety, and aesthetics. This study aims to analyze the mechanical performance of the wheel through Finite Element Analysis (FEA) simulation. The FEA simulation was conducted using Ansys 18.1 software with a load of 1500 N, covering both static and dynamic loading conditions. The material tested is Aluminum Alloy 6061-T6, with material properties derived from tensile testing. The simulation results indicate that maximum stress occurs in critical areas, such as bolt holes and the intersection of spokes with the wheel rim, with a maximum stress value of 46.027 MPa. This stress level remains below the material's yield strength (276 MPa), demonstrating that the design is safe from plastic deformation. The total deformation observed is 0.053 mm, which is negligible and does not affect the wheel's functionality. A safety factor exceeding 2.5 confirms that the wheel can withstand more extreme loads. Based on these findings, design optimizations such as adding fillets and surface treatments are recommended to enhance the wheel's reliability. This research provides valuable insights for the development of stronger, lighter, and more durable wheels, particularly suited to the diverse road conditions found in Indonesia.
The influence of the hydrocarbon cracking system (HCS) on increased torque and reduction of exhaust emissions on a 4-step 1-cylinder gasoline motor Arif Nur Huda, muhammad; Hadi Susilo, Sugeng; Rohman, Fatkhur; Bin Abas, Mohammad Fadhil
Asian Journal Science and Engineering Vol. 3 No. 2 (2024): Asian Journal Science and Engineering
Publisher : CV. Creative Tugu Pena

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51278/ajse.v3i2.1763

Abstract

The automotive industry faces challenges in improving fuel efficiency and reducing exhaust emissions. One solution being developed is the Hydrocarbon Cracking System (HCS), which breaks down hydrocarbon molecules in fuel to enhance combustion efficiency. This study aims to analyze the effects of HCS on engine torque and exhaust emissions (CO, HC, and CO₂) in a four-stroke, single-cylinder gasoline engine. The research method involves an experimental factorial design of 6 × 2, testing torque and exhaust emissions at various engine speeds. Measurements were conducted using a dynamometer and a gas analyzer to compare standard conditions with HCS implementation. The results indicate that HCS increases engine torque by 3.40% and reduces CO and HC emissions by 28.12% and 54.35%, respectively. However, CO₂ emissions increased by 12.48%, indicating more complete combustion. Overall, HCS proves to enhance engine efficiency and reduce harmful emissions, making it a potential eco-friendly solution for motor vehicles.
Analisis Kekuatan Desain Velg Kendaraan Ringan Menggunakan Metode Elemen Hingga: Pendekatan Inovatif untuk Keamanan dan Efisiensi Putra, Agus Dwi; Diama Rizky Septiawan; Muhammad Arif Nur Huda; Dewi Izzatus Tsamroh; Bella Cornelia Tjiptady
Jurnal Teknik Mesin Indonesia Vol. 20 No. 1 (2025): Vol. 20 No. 1 (2025): Jurnal Teknik Mesin Indonesia
Publisher : Badan Kerja Sama Teknik Mesin Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36289/jtmi.v20i1.816

Abstract

Car wheels are critical components responsible for bearing vehicle loads and ensuring stability during driving. This study aims to analyze the strength of car wheels using the Finite Element Method (FEM) with Solidworks 2020 software. The analyzed parameters include von mises stress, equivalent strain, displacement, and safety factor. Simulation results show a maximum stress of 1.978 × 10⁵ N/m² and a maximum strain of 2.449 × 10⁻⁶, within the safe limits of aluminum alloy material. A maximum displacement of 5.687 × 10⁻⁴ mm indicates sufficient structural stiffness of the wheel. The minimum factor of safety, 1.087 × 10³, suggests a high tolerance against failure. This study confirms that the wheel design is safe, efficient, and meets safety standards. The finite element method effectively identifies critical areas and optimizes the design before production. Validation through physical testing is recommended to ensure alignment with real-world conditions.
Experimental Investigation of Air-to-Kapok Oil Ratio Effects on Flame Height and Morphology in a Bunsen Burner Pranoto, Bayu; Supriyanto, Nicky Suwandhy Widhi; Gunawan, Chandra; Aji, Supa Kusuma; Huda, Muhammad Arif Nur
G-Tech: Jurnal Teknologi Terapan Vol 9 No 3 (2025): G-Tech, Vol. 9 No. 3 July 2025
Publisher : Universitas Islam Raden Rahmat, Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.70609/g-tech.v9i3.7120

Abstract

The growing global demand for energy highlights the limitations of fossil fuel resources. This makes innovation in alternative energy development crucial, and one promising avenue is the use of vegetable oils like kapok oil. Kapok oil has a complex chemical composition, composed of various triglycerides of fatty acids and glycerol, where each fatty acid component contributes unique combustion characteristics. The interaction of the complexity of this content as a whole affects the flame pattern of kapok oil. Furthermore, the air-fuel mixture ratio (AFR) plays a significant role in determining the characteristics of the resulting flame. Therefore, this study aims to explore in depth the effect of AFR variations on the combustion characteristics of kapok oil. Experiments were conducted by burning a mixture of kapok oil vapor and air on a burner with controlled AFR settings. The results showed that the variation of AFR significantly changed the flame height and morphology. Flame height initially increased with increasing AFR (from 1.34 cm at AFR 0.143:1 to 4.429 cm at AFR 1.526:1) before decreasing (to 0.264 cm at AFR 4.011:1) until it reached the lift-off condition and went out.
Optimasi Parameter Laser Cutting CO₂ untuk Meminimalkan Kekasaran Permukaan dan Meningkatkan Akurasi Dimensi Material PMMA Menggunakan Response Surface Methodology Huda, Muhammad Arif Nur; Risnawati, Faradilla Fauziyah; Hidayatullah, Rizkyansyah Alif; Rakhmaddian, Nicko Nur
Metrotech (Journal of Mechanical and Electrical Technology) Vol 4 No 2: Mei 2025
Publisher : Fakultas Sains dan Teknologi, UNIRA Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.70609/metrotech.v4i2.7068

Abstract

Saat ini, teknologi pemotongan non-konvensional, khususnya pemotongan berbasis energi laser, semakin banyak digunakan karena menghasilkan potongan yang halus, akurat dan tanpa ada gaya potong mekanis. Salah satu teknologi laser paling luas diaplikasikan untuk pemotongan non logam adalah laser karbondioksida (CO2). Laser CO₂ ini bekerja dengan panjang gelombang sekitar 10,6 µm, yang efektif diserap oleh berbagai material polimer dan termoplastik, termasuk Polymethyl Methacrylate (PMMA). Penelitian ini bertujuan menganalisis pengaruh daya laser dan kecepatan potong terhadap kekasaran permukaan (Ra) dan akurasi dimensi (DA) pada proses laser cutting CO₂, serta mengoptimalkan parameter tersebut untuk meminimalkan kekasaran dan meningkatkan akurasi. Metode yang dipakai dalam penelitian menggunakan Response Surface Methodology (RSM) dengan pendekatan Central Composite Design (CCD). CCD menghasilkan 13 kombinasi eksperimen yang terdiri dari 4 titik faktorial, 4 titik aksial, dan 5 replikasi di titik pusat. Polymethyl Methacrylate (PMMA) atau akrilik yang digunakan tipe bening dengan ketebalan 3 mm dan dipotong dalam ukuran 25 mm x 25 mm oleh mesin CNC laser cutting CO2 50 watt. Adapun nilai parameter dipilih 35%-55% untuk daya laser dan 5 mm/s – 10 mm/s untuk kecepatan potong. Hasil pengujian menunjukkan bahwa daya laser dan kecepatan potong berpengaruh signifikan terhadap kedua respon, yaitu kekasaran permukaan (Ra) dan akurasi dimensi (DA), dengan kecepatan potong sebagai faktor yang paling dominan, diikuti oleh daya laser. Optimasi parameter menghasilkan kombinasi terbaik pada daya laser 45,99% dan kecepatan potong 6,46 mm/s, dengan prediksi hasil Ra dan DA adalah 0,9209 µm dan 24,7939 mm. Hasil validasi membuktikan bahwa model dapat digunakan untuk pengaturan proses secara optimal dimana nilai aktual hasil optimasi didapatkan 0,851 µm untuk nilai Ra dan 24,78 mm untuk nilai DA yang mana nilai tersebut menghasilkan nilai deviasi yang rendah terhadap nilai prediksi.
ANALISIS PENGARUH BEBAN EKSTERNAL TERHADAP DISTRIBUSI REGANGAN PADA PIPA MELALUI PENDEKATAN FINITE ELEMENT METHOD Risnawati, Faradilla Fauziyah; Huda, Muhammad Arif Nur; Kautzar, Galuh Zuhria; Septiawan, Diama Rizky
Steam Engineering Vol. 7 No. 1 (2025): STEAM Engineering, Vol. 7, No. 1, September 2025
Publisher : Program Studi Pendidikan Teknik Mesin, Fakultas Keguruan dan Ilmu Pendidikan, Universitas Palangka Raya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37304/jptm.v7i1.22791

Abstract

This study aims to analyse the effect of external loading on the distribution of plastic strain in API 5L X80 steel pipes using the Finite Element Method. External loading was modelled through an indentation process using a spherical indenter with diameter variations of 75 mm, 100 mm, and 125 mm, and indentation depths of 2 mm, 3 mm, and 4 mm. The simulation was conducted under zero internal pressure conditions to evaluate the plastic strain distribution formed after loading. The results show that increasing the indentation depth significantly increases the maximum plastic strain value and expands the deformation area on the pipe wall. Conversely, increasing the indenter diameter tends to reduce the maximum plastic strain value but broadens the affected area of strain distribution. The maximum strain concentration is located at the dent’s flank rather than the root, which is caused by the load distribution from the spherical indenter toward the transition area. These findings highlight the importance of dent geometry parameters in predicting the plastic strain response of pipes, providing valuable insights for assessing the structural integrity of pipelines in oil and gas industry applications