Claim Missing Document
Check
Articles

Found 5 Documents
Search

Implementasi Machine Learning untuk Meningkatkan Penjualan di Pasar Digital Melalui Strategi Point Of Purchase Risma, Risma; Prastya, Septyan Eka; Nurhaeni, Nurhaeni; Ansari, Rudy
Jurnal Nasional Komputasi dan Teknologi Informasi (JNKTI) Vol 7, No 5 (2024): Oktober 2024
Publisher : Program Studi Teknik Komputer, Fakultas Teknik. Universitas Serambi Mekkah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32672/jnkti.v7i5.8004

Abstract

Abstrak - Pasar digital berkembang pesat dengan meningkatnya akses internet, menjadikannya pusat aktivitas ekonomi yang signifikan. Dalam persaingan yang ketat, inovasi seperti Point of Purchase (PoP) menjadi krusial untuk menarik perhatian konsumen dan mempengaruhi keputusan pembelian mereka. Penelitian ini bertujuan untuk meningkatkan efektivitas penjualan di pasar digital dengan menggunakan Machine Learning, khususnya melalui algoritma K-Means Clustering. Algoritma ini digunakan untuk mengelompokkan konsumen berdasarkan pola perilaku yang serupa, membantu perusahaan memahami preferensi dan kebiasaan konsumen secara lebih mendalam. Metode penelitian mencakup pengumpulan dan preprocessing data penjualan, serta penerapan K-Means Clustering untuk membentuk cluster penjualan. Hasilnya menunjukkan peningkatan efektivitas penjualan dan pemahaman yang lebih baik mengenai preferensi konsumen. Pengelompokan data ini dapat mengidentifikasi pola perilaku konsumen yang membantu menyusun strategi pemasaran yang lebih fokus di titik-titik kunci PoP.Kata kunci: k-means clustering, machine learning, point of purchase, pasar digital, strategi pemasaran. Abstract - The digital marketplace has rapidly expanded with the increasing access to the internet, making it a significant hub of economic activity. In a highly competitive environment, innovations such as Point of Purchase (PoP) are crucial for capturing consumer attention and influencing their purchasing decisions. This research aims to enhance sales effectiveness in the digital marketplace by utilizing Machine Learning, specifically through the K-Means Clustering algorithm. This algorithm is employed to segment consumers based on similar behavioral patterns, helping companies gain a deeper understanding of consumer preferences and habits. The research methodology includes data collection and preprocessing of sales data, followed by the application of K-Means Clustering to form sales clusters. The results indicate an increase in sales effectiveness and a better understanding of consumer preferences. This data segmentation can identify consumer behavior patterns that assist in developing more targeted marketing strategies at key PoP points.Keywords: digital marketplace, k-means clustering, machine learning, marketing strategy, point of purchase.
Sistem Informasi Jadwal Siaran Studio 5 Universitas Muhammadiyah Banjarmasin Ansari, Rudy; Alkaff, Muhammad
Jurnal Teknologi Berkelanjutan Vol 12 No 2 (2023): Vol 12 No. 02
Publisher : Lambung Mangkurat University Press

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20527/jtb.v12i2.253

Abstract

Studio 5 Muhammadiyah University Banjarmasin, there are 2 (two) employees, the scheduling process at studio 5 is carried out by sending a letter to the resource person concerned. Scheduling is also done by taking notes on the whiteboard in the studio5. Then when the filming process, video editing has been carried out, then the video has been uploaded to the YouTube channel, the notes on the whiteboard are deleted or cleaned. The aim of making this schedule is so that all schedules are recorded well and can be displayed visually. In this system, an application is created that can be displayed on the television screen at the Muhammadiyah University of Banjarmasin, where before this application was created, it was still written on a blackboard for the schedule and implementation of events. This information system was created based on the Software Development Life Cycle (SDLC) method, where the stages of the method include system analysis by directly conducting interviews with related parties, system design using Unified Modeling Language (UML) design for the diagram stages, namely Usecase Diagram, Sequence Diagram, Activity Diagram, then for the database using MySql Workbench, implementation, testing and maintenance for implementation using Laravel tools. So that with these stages it is possible to clearly build an information system for broadcast schedules for Studio 5 of Muhammadiyah University, Banjarmasin. The Studio 5 broadcast schedule information system has several features, starting from the broadcast proposal feature from users and the broadcast proposal feature from admin, the master data feature which includes section data, editor data, cameraman data, and moderator data which can be managed by the admin, a validation feature where broadcast suggestions from users can be scheduled because they have been validated by the admin, and a print or report feature where in this feature the data contained in the broadcast data is printed in excel format.
SISTEM PEMANTAUAN KETINGGIAN AIR SUNGAI UNTUK TANGGAP BENCANA BANJIR BERBASIS INTERNET OF THINGS Marleny, Finki Dona; Sari, Novita; Ansari, Rudy; Fitri, Aulia; Mambang, Mambang
PENDIDIKAN SAINS DAN TEKNOLOGI Vol 12 No 1 (2025)
Publisher : STKIP PGRI Situbondo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47668/edusaintek.v12i1.1427

Abstract

Banjir dengan dampak berskala luas melanda beberapa provinsi di Kalimantan. Pada Januari 2021 dari data BNPB tercatat sebagai banjir besar yang melanda Provinsi Kalimantan Selatan, ribuan rumah terendam dan banyak fasilitas umum rusak akibat bencana banjir. Peristiwa banjir di provinsi Kalimantan selatan berasal dari beberapa kabupaten di provinsi. Pada pertengahan tahun, bencana banjir melanda di provinsi Kalimantan Utara dan Kalimantan Barat, sedangkan pada Agustus 2021 bencana banjir tercatat telah merendam di beberapa daerah di provinsi Kalimantan Timur dan Kalimantan Tengah. Banyak korban dan fasilitas yang rusak, jika tidak ditangani dengan benar, akan menghambat, mengganggu dan membahayakan masyarakat. Instrumen yang diakui untuk mengelola peristiwa bencana memiliki siklus respons manajemen risiko yang cepat. Provinsi dengan tingkat risiko rawan banjir menunjukkan bahwa pencegahan banjir dan situasi pemantauan curah hujan penting untuk deteksi bencana banjir sehingga provinsi sekitarnya dapat mendukung provinsi lain dalam keadaan darurat, Informasi cepat dalam memulai deteksi bencana banjir dapat mengurangi risiko kerusakan pasca-banjir. Penelitian ini bertujuan untuk memantau keadaan cuaca dan batas ketinggian air sungai yang sebagaian besar menjadi pemicu terjadinya banjir di wilayah Kalimantan. Sistem Pemantauan menggunakan perangkat mobile dengan menghimpun data secara Real-Time dari sensor-sensor cerdas yang tertanam pada sistem berbasis Internet of Things pada daerah yang rawan akan banjir dan sistem terintegrasi dengan ponsel cerdas untuk tanggap bencana banjir.
PELATIHAN DIGITAL MARKETING PADA KELOMPOK PENGRAJIN PEMULA SASIRANGAN DESA SEI JINGAH Ahadi Ningrum, Ayu; Dona Marleny, Finki; Ansari, Rudy; Windarsyah; Kamaruddin; Gazali, Mukhaimy; Saubari, Nahdi; Maulida, Ihdalhubbi
Jurnal IMPACT: Implementation and Action Vol. 5 No. 1 (2022): Jurnal Impact
Publisher : Politeknik Negeri Banjarmasin

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31961/impact.v5i1.14781

Abstract

Sasirangan merupakan kain khas Kalimantan Selatan yang memiliki potensi pasar yang sangat bagus. Ratusan industri perajin sasirangan dari industri rumah tangga, skala mikro dan makro sudah mulai berkembang di Kalimantan Selatan dengan total omzet ratusan juta per bulan. Pesatnya perkembangan industri ini juga berbanding lurus dengan persaingan di pasar kain khusus Banua yang juga semakin ketat. Kegiatan pengabdian masyarakat pelatihan pemasaran digital ini bertujuan untuk memberikan pemahaman tentang pemasaran produk berbasis teknologi dan keterampilan menggunakan teknologi kepada pengrajin sasirangan pemula. Peserta yang terlibat dalam pelatihan pengabdian masyarakat digital marketing ini terdiri dari 15 orang yang merupakan pengrajin kain sasirangan di Desa Sasirangan, Sei Jingah Banjarmasin. Materi dalam upaya pengembangan usaha berbasis teknologi bagi Pengrajin Sasirangan di Desa Sei Jingah melalui pelatihan digital marketing antara lain: 1) Menumbuhkan jiwa wirausaha dan memberikan inspirasi kesuksesan bisnis online, 2) Sharing session, 3) Pelatihan digital marketing (melalui sosialisasi media dan e-commerce).
Intelligent Monitoring System Framework for Peatland Management in IoT-Integrated Precision Agriculture Marleny, Finki Dona; Novriansyah, Irvan; Maulida, Ihdalhubbi; Ansari, Rudy; Mambang, Mambang; Saubari, Nahdi
JOIV : International Journal on Informatics Visualization Vol 9, No 2 (2025)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.9.2.2955

Abstract

Peatlands have excellent air retention capabilities and are crucial for environmental health. They act as natural sponges, absorbing and releasing air, which helps maintain soil moisture levels vital for crops. However, peatlands are highly sensitive ecosystems often threatened by unsustainable agricultural practices. When managed sustainably, peatlands scattered across the globe can be utilized for various farming activities. Managing peatlands for food crops presents an alternative to agriculture in peatland areas, enhancing economic growth in rural regions. This research aims to introduce a framework that integrates IoT into the intelligent monitoring of peatland management for precision agriculture. The primary challenge is implementing effective monitoring and management strategies for sensitive peatlands within precision agriculture. The main principle of precision agriculture is data-driven decision-making, supported by modern agricultural management that employs technology and data analysis to optimize farming practices. The proposed system framework can be utilized to identify the best types of food crops for making new decisions while ensuring high yields at the agricultural level. Precision agriculture principles are then applied to enhance the accuracy of monitoring peatland management, focusing on suitable land potential and food crops planted in areas with the highest potential. The results indicate that prioritizing peatlands for food crops reduces inappropriate decisions in selecting food crops. Furthermore, the efficiency of agricultural management can be improved with lower management costs. This framework provides a practical and user-friendly basis for informing all stakeholders on automating Peatland agriculture for food crops using precision agriculture systems integrated with IoT. Management practices that apply information technology aim to optimize crop inputs based on temporal and spatial variability. The cost-effectiveness from this perspective creates transition opportunities for communities, positioning our framework as a solution for designing Peatland management with intelligent monitoring.