Claim Missing Document
Check
Articles

Found 16 Documents
Search

Strawberry Disease Detection Based on YOLOv8 and K-Fold Cross-Validation Pranata, I Made Dicky; Darma, I Wayan Agus Surya; Sandhiyasa, I Made Subrata; Wiguna, I Komang Arya Ganda
Jurnal Ilmiah Merpati (Menara Penelitian Akademika Teknologi Informasi) Vol 11 No 3 (2023): Vol. 11, No. 3, December 2023
Publisher : Lembaga Penelitian dan Pengabdian kepada Masyarakat Universitas Udayana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24843/JIM.2023.v11.i03.p06

Abstract

Strawberry plant diseases can be detected by the condition of the strawberry leaves, flowers, and fruit, but farmers still need knowledge to identify the type of strawberry disease. This study aims to develop a detection model using YOLOv8. The detection model was trained using a dataset containing 3,243 images of strawberry plant leaves, fruit, and flowers, divided into seven disease classes and one healthy plant class. This study aims to develop a more effective strawberry plant disease detection technology. The proposed method is based on YOLOv8 by applying K-Fold Cross Validation to the detection model training and applied data albumentations to produce a robust model. Based on the experimental results, it shows that the YOLOv8s model obtained the highest precision, recall, F1-score, and mean average precision values of 1.00, 0.94, 0.84, and 0.885 respectively.
EKSTRAKSI FITUR AKSARA BALI MENGGUNAKAN METODE ZONING I Wayan Agus Surya Darma; I K. G. Darma Putra; Made Sudarma
Jurnal Teknologi Elektro Vol 14 No 2 (2015): (July - December) Majalah Ilmiah Teknologi Elektro
Publisher : Program Studi Magister Teknik Elektro Universitas Udayana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24843/MITE.2015.v14i02p09

Abstract

Feature extraction is an important process in character recognition system. The purpose of this process is to obtain special feature from a character image. This paper is focuses on how to obtain special feature from a handwritten Balinese character image using zoning. This algorithm dividing Balinese character image into multiple regions, then a special feature on each region resulting the data extracted feature. The test result in this paper generates a various  semantic and direction feature data. This is because this paper using handwritten Balinese character. Furthermore, the features that produced in this paper can be used on Balinese character image recognition process
Enhancing Breast Cancer Recognition in Histopathological Imaging Using Fine-Tuned CNN Darma, I Wayan Agus Surya; Sutramiani, Ni Putu
Jurnal Ilmiah Merpati (Menara Penelitian Akademika Teknologi Informasi) Vol 12 No 3 (2024): Vol. 12, No. 3, December 2024
Publisher : Lembaga Penelitian dan Pengabdian kepada Masyarakat Universitas Udayana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24843/JIM.2024.v12.i03.p04

Abstract

Global Cancer Statistics reports that of the 2.3 million cases of breast cancer worldwide, 600,000 result in death. Factors contributing to breast cancer in women include both genetic and lifestyle influences. One method for recognizing breast cancer is through histopathology images. Recently, deep learning has gained significant attention in machine learning due to its powerful capabilities in modeling complex data, such as images. In this study, we classify breast cancer by training a Convolutional Neural Network (CNN) model on a dataset of histopathology images annotated and validated by experts, containing two classes. We propose an optimization strategy for CNN models to enhance breast cancer recognition performance, applying a fine-tuning strategy to MobileNetV2 and InceptionResNetV2 to evaluate CNN performance in classifying breast cancer within histopathological images. The experimental results demonstrate that the model achieves optimal performance with an accuracy of 96.22%.
The Performance Comparison of DBSCAN and K-Means Clustering for MSMEs Grouping based on Asset Value and Turnover Sutramiani, Ni Putu; Arthana, I Made Teguh; Lampung, Pramayota Fane'a; Aurelia, Shana; Fauzi, Muhammad; Darma, I Wayan Agus Surya
Journal of Information Systems Engineering and Business Intelligence Vol. 10 No. 1 (2024): February
Publisher : Universitas Airlangga

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20473/jisebi.10.1.13-24

Abstract

Background: This study focuses on the latest knowledge regarding Micro, Small and Medium Enterprises (MSMEs) as a current central issue. These enterprises have shown their significance in providing employment opportunities and contributing to the country's economy. However, MSMEs face various challenges that must be addressed to optimize their outcomes. Understanding the characteristics of this group was crucial in formulating effective strategies. Objective: This study proposed to cluster or combine micro, small, and medium enterprises (MSMEs) data in a particular area based on asset value and turnover. As a result, this study aimed to gain insights into the MSME landscape in the area and provided valuable information for decision-makers and stakeholders. Methods: This study utilized two methods, namely the DBSCAN (Density-Based Spatial Clustering of Applications with Noise) method and the K-Means method. These methods were chosen for their distinct capabilities. DBSCAN was selected for its ability to handle noisy data and identify clusters with diverse forms, while K-Means was chosen for its popularity and ability to group data based on proximity. The study used a dataset containing MSME information, including asset values and turnover, collected from various sources. Results: The outcomes encompassed identifying clusters of MSMEs based on their closeness in the feature space within a specific region. Optimizing the clustering outcomes involved modifying algorithm parameters like epsilon and minimum points for DBSCAN and the number of clusters for K-Means. Furthermore, this study attained a deeper understanding of the arrangement and characteristics of MSME clusters in the region through a comparative analysis of the two methodologies. Conclusion: This study offered perspectives on clustering MSMEs based on asset value and turnover in a specific region. Employing DBSCAN and K-Means methodologies allowed researchers to depict the MSME landscape and grasp the business attributes of these enterprises. These results could aid in decision-making and strategic planning concerning the advancement of the MSME sector in the mentioned area. Future study may investigate supplementary factors and variables to deepen comprehension of MSME clusters and promote regional growth and sustainability.   Keywords: Asset Value, Clustering, DBSCAN, K-Means, Turnover
Extensive Deep Learning Models Evaluation For Indonesian Sign Language Recognition Audrey Tilanov Pramasa; Ni Putu Sutramiani; I Putu Agung Bayupati; I Wayan Agus Surya Darma
Lontar Komputer : Jurnal Ilmiah Teknologi Informasi Vol. 16 No. 02 (2025): Vol.16, No. 02 August 2025
Publisher : Institute for Research and Community Services, Udayana University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24843/LKJITI.2025.v16.i02.p04

Abstract

Sign language is a vital communication method for individuals with hearing loss or deafness, with variations reflecting unique cultural contexts. Real-time recognition of sign language can bridge communication gaps, yet­­ developing tools for Indonesian Sign Language (BISINDO) is challenging due to limited datasets. This research addresses these challenges by enhancing BISINDO detection and real-time rec­­ognition, focusing on flexible dataset collection and adaptation to varying lighting conditions. Three convolutional neural networks—InceptionV3, MobileNetV2, and ResNet50—are evaluated with optimizers SGD, Adagrad, and Adam to determine the best architecture-optimizer combination. Models were trained on a common dataset and analyzed for optimal performance. Real-time recognition uses MobileNetV2 SSD, integrating data augmentation to improve performance under diverse lighting. The system was deployed on a mobile device for practical use. Results showed the real-time model attained a mean Average Precision (mAP) of 90.34%. This study demonstrates significant advancements in BISINDO recognition and real-time application
Network Reduction Strategy and Deep Ensemble Learning for Blood Cell Detection I Nyoman Piarsa; Ni Putu Sutramiani; I Wayan Agus Surya Darma
Lontar Komputer : Jurnal Ilmiah Teknologi Informasi Vol. 14 No. 03 (2023): Vol. 14, No. 03 December 2023
Publisher : Institute for Research and Community Services, Udayana University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24843/LKJITI.2023.v14.i03.p04

Abstract

Identifying and characterizing blood cells are vital for diagnosing diseases and evaluating a patient's health. Blood, consisting of plasma and cells, offers valuable insights through its biochemical and ecological features. Plasma constitutes the liquid component containing water, protein, and salt, while platelets, red blood cells (RBCs), and white blood cells (WBCs) form the solid portion. Due to diverse cell characteristics and data complexity, achieving reliable and precise cell detection remains a significant challenge. This study presents a network reduction strategy and deep ensemble learning approaches to detect blood cell types based on the YOLOv8 model. Our proposed methods aim to optimize the YOLOv8 model by reducing network depth while preserving performance and leveraging deep ensemble learning to enhance model accuracy. Based on the experiments, the NRS strategy can reduce the complexity of the YOLO model by reducing the depth and width of the YOLO network while maintaining model performance by 4%, outperforming the baseline YOLOv8 model.