Claim Missing Document
Check
Articles

Found 9 Documents
Search

PELATIHAN KETERAMPILAN OPERASIONAL DAN PERAWATAN SISTEM KELISTRIKAN BANGUNAN GEDUNG BAGI PEMUDA PUTUS SEKOLAH DI DESA GIRIMEKAR KABUPATEN BANDUNG Kustija, Jaja; ., Hasbullah; Mulyana, Elih
ABMAS Vol 17, No 1 (2017): Jurnal Abmas
Publisher : Universitas Pendidikan Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (340.283 KB) | DOI: 10.17509/abmas.v17i1.36851

Abstract

Tujuan dari kegiatan pengabdian pada masyarakat berbasis desa binaan ini adalah untuk memberikan pelatihan bagi pemuda putus sekolah dalam menguasi keterampilan dalam bidang operasional pemeliharaan dan instalasi gedung listrik gedung yang dilaksanakan dengan menggunakan metode partisipatori dengan pendekatan demand responsive approach. Model pelatihan yang dikembangkan di dasarkan kebutuhan dan desa setempat dalam konteks pembangunan dan potensi pembangunan, sehingga diharapkan hasil dari kegiatan pelatihan ini dapat memberikan peluang kerja bagi pemuda dalam upaya mengurangi peningkatan taraf hidup masyarakat. Model keterampilan yang dikembangkan meliputi: (1) tahap pelatihan (2) tahap pelaksanaan pelatihan, (3) tahap pendampingan dan (4) pemantauan dan evaluasi. Hasil dari pengembang model pelatihan instalasi listrik ini adalah terbukanya peluang usaha bagi pemuda dalam bidang operasional dan pemeliharaan instalasi listrik sehingga dapat meningkatkan taraf hidup dan kesejahteraan serta terwujudnya model desa binaan yang didukung oleh pemerintah desa setempat yang berbasis kemitraan dengan tim PKM UPI. Kegiatan PKM desa binaan berbasis kemitraan ini diikuti oleh sekitar 25 orang pemuda yang ada di wilayah Desa Girimekar. Luaran yang dihasilkan dari PKM Desa Binaan ini adalah munculnya sejumlah kader instalatur desa mandiri dari kalangan pemuda d yang memiliki Kegiatan PKM desa binaan berbasis kemitraan ini diikuti oleh sekitar 25 orang pemuda yang ada di wilayah Desa Girimekar. Luaran yang dihasilkan dari PKM Desa Binaan ini adalah munculnya sejumlah kader instalatur desa mandiri dari kalangan pemuda d yang memiliki Kegiatan PKM desa binaan berbasis kemitraan ini diikuti oleh sekitar 25 orang pemuda yang ada di wilayah Desa Girimekar. Luaran yang dihasilkan dari PKM Desa Binaan ini adalah munculnya sejumlah kader instalatur desa mandiri dari kalangan pemuda d yang memilikiketerampilan tentang operasinal dan perawatan sistem instalasi listrik banguna serta adanya publikasi pada jurnal nasional/internasional terindeks.
PELATIHAN KETERAMPILAN PEMASANGAN DAN PEMELIHARAAN INSTALASI LISTRIK RUMAH TINGGAL BAGI PEMUDA DAN KARANG TARUNA DI DESA SUKAJAYA KECAMATAN LEMBANG KABUPATEN BANDUNG BARAT Kustija, Jaja; Mulyana, Elih; Trisno, Bambang; ., Hasbullah
ABMAS Vol 16, No 1 (2016): Jurnal Abmas
Publisher : Universitas Pendidikan Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (378.343 KB) | DOI: 10.17509/abmas.v16i1.38706

Abstract

Sistem monitoring beban listrik dan perbaikan faktor daya menggunakan PZEM004T dan dashboard Adafruit berbasis IoT Surya, Irgi; Kustija, Jaja; Eka Pawinanto, Roer; Pramudita, Resa; Adli Rizqulloh, Muhammad; Wahyudin, Didin; Haritman, Erik
JITEL (Jurnal Ilmiah Telekomunikasi, Elektronika, dan Listrik Tenaga) Vol. 3 No. 3: September 2023
Publisher : Jurusan Teknik Elektro, Politeknik Negeri Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35313/jitel.v3.i3.2023.235-246

Abstract

Graphic User Interface (GUI) pada suatu sistem Internet of Things (IoT) salah satunya dipengaruhi oleh monitor yang mudah diakses, fleksibel, serta efisien dalam penggunaannya. Hal ini sudah banyak didiskusikan namun masalah tersebut masih belum dapat ditingkatkan. Salah satu solusi dari masalah tersebut adalah dengan dihadirkannya MQTT Adafruit, yang mana dengan menggunakan MQTT Adafruit GUI untuk memonitor suatu sistem IoT dapat mempermudah kontrol dan kendali jarak jauh. Penelitian ini bertujuan untuk menghadirkan sistem monitoring beban listrik dan perbaikan faktor daya menggunakan PZEM004T berbasis IoT yang sudah menggunakan MQTT Adafruit sebagai user interface-nya. Metode yang digunakan melalui pendekatan analysis, design, development, implementation, evaluation (ADDIE). Hasil penelitian menunjukan bahwa sistem ini layak digunakan karena berdasarkan hasil percobaan faktor daya yang sebelumnya 0,35 menjadi 0,89 setelah dilakukan perbaikan faktor daya. Sistem ini juga memberikan kemudahan bagi pengguna dan dapat melakukan monitoring secara real time arus, tegangan, faktor daya, daya nyata, daya semu, dan daya reaktif baik hanya dengan menggunakan smartphone, laptop, tablet, maupun komputer. Berdasarkan hasil uji reliabilitas alat ini memiliki selisih yang kecil antara setiap hasil percobaan.
IMPLEMENTATION OF ANDROID-BASED MEDIA SMART WITH PNEUMATICS V.1.0 IN PNEUMATIC CONTROL SYSTEM LEARNING Ibrahim, fakhri; kustija, jaja; Purnawan, Purnawan
Journal of Mechanical Engineering Education (Jurnal Pendidikan Teknik Mesin) Vol 8, No 2 (2021): Desember 2021
Publisher : Universitas Pendidikan Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17509/jmee.v8i2.40990

Abstract

The purpose of this research is to determine the effect of the application of android-based media Smart with Pneumatics V.1.0 on student learning outcomes on the pneumatic component mechanism material. “Smart with Pneumatics V.1.0” is a learning media in the form of an Android-based computer program. This study uses a pre experimental design research method with the form of the research design used is one group pretest posttest design. The population used was students who contracted Pneumatics and Hydraulics courses in the even semester of the 2020/2021 academic year as many as 63 students. The conclusion of this study is that there is a significant influence in the application of android-based media "Smart with Pneumatics V.1.0" on student learning outcomes in the pneumatic component mechanism material for the Pneumatics and Hydraulics course and the average N-Gain value obtained is in the medium category.
Revitalizing IoT-based air quality monitoring system for major cities in Indonesia Kustija, Jaja; Fahrizal, Diki; Nasir, Muhamad
SINERGI Vol 28, No 3 (2024)
Publisher : Universitas Mercu Buana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22441/sinergi.2024.3.016

Abstract

An IoT-based air quality monitoring system is a technology that integrates with the internet to monitor and measure numerous air quality metrics in real-time. CO levels, dust particle levels, temperature, and humidity are the air quality characteristics that must be monitored. The air quality monitoring system in its current state requires further development, such as challenges to acquiring accurate and real-time data and difficulty in accessing reliable information. Poor air quality causes various health problems, respiratory, vision, heart disease, and even cancer. The development of air pollution producers continues to increase along with the number of oil-fueled vehicles, industries operated using petroleum-fueled engines, power plants that use energy from coal, gas and petroleum. This study presents an IoT-based air quality parameter monitoring system solution that is connected with the Blynk platform and can be accessible in real time, in an effort to assist the SDGs program, which is mandated by the global community through the UN. The research technique employed is Analysis, Design, Development, Implementation, and Evaluation. The study successfully presented an IoT-based air quality monitoring system connected with the Blynk platform, which showed great accuracy in measurement 94.34% (CO), 81.15% (dust), 99.14% (temperature), and 96.84% (humidity). These results advance urban air quality monitoring and inform sustainable technology development, contributing to environmental and health-related SDGs.
Design and development of coastal marine water quality monitoring based on IoT in achieving implementation of SDGs Kustija, Jaja; Fahrizal, Diki; Nasir, Muhamad; Setiawan, Deny; Surya, Irgi
Indonesian Journal of Electrical Engineering and Computer Science Vol 36, No 3: December 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v36.i3.pp1470-1484

Abstract

Indonesia, an archipelagic nation with about 70% ocean territory, relies on oceanographic data for efficient marine environment monitoring and natural resource sustainability. Current data collection is limited by tools measuring only single parameters and lengthy data collection times. This study proposes a marine coastal water quality monitoring tool based on the internet of things (IoT), capable of simultaneously measuring temperature, electrical conductivity, pH, and dissolved oxygen. Utilizing an Atmega328 and a battery lasting up to 119 hours, this system offers a cost-effective solution for real-time oceanographic data collection. Employing the ADDIE methodology, the results demonstrate high measurement accuracy compared to traditional methods, with accuracy of 90.5% for temperature, 93.50% for electrical conductivity, 93.67% for pH, and 96.82% for dissolved oxygen. The development of this tool aims to reduce costs and labor in capturing oceanographic data integrated with IoT, facilitate access and monitoring of water data, and make a significant contribution to achieving SDGs targets. The main focus on the goals of addressing climate change and life underwater, especially in the aspects of water resources management and protection of marine ecosystems in Indonesian.
Pelatihan Perawatan Instalasi Rumah Bagi Masyarakat Desa Cipada Cikalong Wetan Fauzan, Mochamad Rizal; Pramudita, Resa; Somantri, Maman; Suartini, Tuti; Kustija, Jaja
BANTENESE : JURNAL PENGABDIAN MASYARAKAT Vol. 6 No. 2 (2024): Bantenese: Jurnal Pengabdian Masyarakat
Publisher : Pusat Studi Sosial dan Pengabdian Masyarakat Fisipkum Universitas Serang Raya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30656/d51yr251

Abstract

Pelatihan Perawatan Instalasi Rumah bagi Masyarakat Desa Cipada, Cikalong Wetan, bertujuan meningkatkan keterampilan masyarakat dalam memelihara instalasi listrik rumah tangga secara mandiri. Minimnya perawatan instalasi listrik sering menyebabkan gangguan listrik, korsleting, hingga kebakaran. Program ini berlangsung tiga hari dengan kombinasi teori dan praktik langsung, mencakup dasar-dasar kelistrikan, pengecekan kabel, penggantian komponen seperti sakelar dan stop kontak, serta pemasangan alat pengaman seperti Miniature Circuit Breaker (MCB). Hasil pelatihan menunjukkan peningkatan pengetahuan dan keterampilan peserta, serta terbentuknya kelompok kerja masyarakat yang bertugas membantu warga lain dalam merawat instalasi listrik. Pelatihan ini juga meningkatkan kesadaran akan pentingnya instalasi yang terawat untuk keselamatan dan efisiensi energi, sekaligus mendorong penghematan biaya listrik. Pelatihan ini diharapkan menciptakan kemandirian masyarakat dalam merawat instalasi listrik, dan modelnya dapat direplikasi di desa lain untuk manfaat yang lebih luas.
Development Tourism Destination Recommendation Systems using Collaborative and Content-Based Filtering Optimized with Neural Networks Fahrizal, Diki; Kustija, Jaja; Akbar, Muhammad Aqil Haibatul
Indonesian Journal of Artificial Intelligence and Data Mining Vol 7, No 2 (2024): September 2024
Publisher : Universitas Islam Negeri Sultan Syarif Kasim Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24014/ijaidm.v7i2.28713

Abstract

Tourism, a vital sector in the global economy, benefits significantly from advancements in infrastructure, accessibility, and information availability. However, the vast volume of information can overwhelm travelers, underscoring the need for efficient recommendation systems. This research aims to develop an advanced tourist destination recommendation system by integrating Collaborative Filtering (CF) and Content-Based Filtering (CBF) models with Neural Networks. This approach seeks to enhance recommendation accuracy by closely aligning with user preferences and addressing the challenge of limited data. The study utilizes data from 523 tourist destinations across West Java, along with user preference assessments, encompassing stages of data collection, labeling, pre-processing, pre-training, neural network-based training, model evaluation, and the presentation of recommendation outcomes. The optimization of the recommendation models through neural networks has notably improved the precision of tourist destination suggestions, achieving Root Mean Square Error (RMSE) values below 0.37 for both CF and CBF approaches. This research significantly contributes to increasing the search efficiency and accuracy for tourist destination information, offering a strategic solution to the prevalent issue of information overload in the tourism industry.
Object detection in printed circuit board quality control: comparing algorithms faster region-based convolutional neural networks and YOLOv8 Kustija, Jaja; Fahrizal, Diki; Nasir, Muhamad; Adriansyah, Andi; Muttaqin, Muhammad Husni
International Journal of Electrical and Computer Engineering (IJECE) Vol 15, No 3: June 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v15i3.pp2796-2808

Abstract

Along with the development of electronic technology, the integration of numerous components on printed circuit board (PCB) boards has resulted in increasingly complex and intricate layouts. Small defects in traces can lead to failures in electronic functions, making the inspection of PCB surface layouts a critical process in quality control. Given the limitations of manual inspection, which struggles to detect such defects due to their size and complexity, there is a growing need for a PCB inspection system that utilizes automated optical inspection (AOI) based on deep learning detection. This research develops and compares two deep learning algorithms, faster region-based convolutional neural networks (R-CNN) and YOLOv8, to identify the most effective algorithm for detecting defects on PCB layouts. The findings of this study indicate that the YOLOv8 algorithm outperforms faster R-CNN, with the YOLOv8x variant emerging as the best model for defect detection. The YOLOv8x model achieved performance scores of 0.962 (mAP@50), 0.503 (mAP@50:95), 0.953 (Precision), 0.945 (Recall), and 0.949 (F1-score). These results provide a strong foundation for further research into the application of AOI for PCB defect detection and other quality control processes in manufacturing, using optimized deep learning models.