Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : KERNEL: Jurnal Riset Inovasi Bidang Informatika dan Pendidikan Informatika

Prediksi Harga Rumah Di Jabodetabek Menggunakan Metode Artificial Neural Network Hafizh, Muhammad Abdullah; Subairi, Subairi; Libriawan, Raditya Dimas; Maulana, Naufal Duta; Rizki, Agung Mustika
KERNEL: Jurnal Riset Inovasi Bidang Informatika dan Pendidikan Informatika Vol 5, No 2 (2024)
Publisher : Institut Teknologi Adhi Tama Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31284/j.kernel.2024.v5i2.6806

Abstract

A house is a fundamental need for humans. Determining house prices is a crucial aspect of property transactions, especially in major areas like Jabodetabek, where property prices are consistently rising. Prediction is a suitable tool to assist in decision-making for determining house prices. There are numerous methods that can be applied for prediction; the author employs the Artificial Neural Network (ANN) method. ANN is known as a highly flexible predictive algorithm capable of accommodating various input features. The results of using the ANN method for predicting house prices in the Jabodetabek area show a Mean Absolute Error (MAE) of 0.209, Mean Squared Error (MSE) of 0.159, and Mean Absolute Percentage Error (MAPE) of 4.951.
Penerapan Convolutional Neural Network (CNN) dalam Klasifikasi Citra MRI untuk Deteksi Tumor Otak Manusia Dimara, Denis Lizard Sambawo; Putri, Shintyadhita Wirawan; Amelia, Rizky; Arishandy, Zalfa Ibtisamah; Rizki, Agung Mustika
KERNEL: Jurnal Riset Inovasi Bidang Informatika dan Pendidikan Informatika Vol 4, No 2 (2023)
Publisher : Institut Teknologi Adhi Tama Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31284/j.kernel.2023.v4i2.6960

Abstract

Brain tumors are deadly diseases with a high mortality rate, making early diagnosis crucial to improving patient survival rates. However, manual diagnosis through Magnetic Resonance Imaging (MRI) often requires significant time and is prone to errors. This study developed an MRI image classification method using the EfficientNetB3-based Convolutional Neural Network (CNN) architecture to detect brain tumors. The dataset used was obtained from Kaggle, consisting of 253 brain MRI images, including 98 normal and 155 abnormal images. The data were preprocessed through normalization and resizing to 224x224 pixels. The model employed transfer learning techniques using pretrained weights from ImageNet, enhanced with additional layers to improve performance. Evaluation was conducted using metrics such as accuracy, precision, recall, F1-score, AUC, as well as confusion matrix and classification report analyses. The results showed that the EfficientNetB3 model achieved an overall accuracy of 86%, demonstrating its capability to support brain tumor diagnosis processes quickly and accurately. This implementation is expected to provide a significant contribution to early detection of brain tumors and improve patient care quality in the medical field.
Klasifikasi Jenis Wayang menggunakan Convolutional Neural Network (CNN) dan Optimasi Adaptive Moment Estimation (ADAM) Imandayanti, Nur Eza; Wahanani, Henni Endah; Rizki, Agung Mustika
KERNEL: Jurnal Riset Inovasi Bidang Informatika dan Pendidikan Informatika Vol 5, No 2 (2024)
Publisher : Institut Teknologi Adhi Tama Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31284/j.kernel.2024.v5i2.6862

Abstract

Perkembangan teknologi memiliki peran penting dalam upaya pelestarian budaya, terutama dalam melestarikan seni tradisional seperti wayang. Wayang merupakan salah satu warisan budaya Indonesia yang telah mengalami penurunan minat sebesar 23,06% dalam kurun waktu 2018 hingga 2021. Sehingga, diperlukan pendekatan baru yang lebih modern untuk dapat menarik perhatian generasi muda. Penelitian ini bertujuan untuk mengembangkan sebuah sistem klasifikasi jening wayang menggunakan convolutional neural network (CNN) dengan optimasi Adaptive Moment Estimation (ADAM) agar memberikan informasi yang lebih akurat mengenai jenis wayang dan meningkatkan akses pendidikan budaya melalui teknologi. Metode CNN dengan optimasi ADAM disinyalir dapat meingkatkan kemampuannya dalam analisis citran dan optimasi akurasi. Hasill penelitian menunjukkan bahwa optimasi ADAM mengikatkan hasil akurasi prediksi hingga 0,84 dalaam 30 iterasi pelatihan dibandingan tanpa memiliki optimasi. Sistem ini dapat digunakan sebagai media pembelajaran interaktif untuk mengenal jenis wayang, termasuk wayang kulit, golek dan beber dengan performa yang baik.