Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : International Journal of Electrical and Computer Engineering

Bone fracture classification using convolutional neural network architecture for high-accuracy image classification Solikhun, Solikhun; Windarto, Agus Perdana; Alkhairi, Putrama
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 6: December 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i6.pp6466-6477

Abstract

This research introduces an innovative method for fracture classification using convolutional neural networks (CNN) for high-accuracy image classification. The study addresses the need to improve the subjectivity and limited accuracy of traditional methods. By harnessing the capability of CNNs to autonomously extract hierarchical features from medical images, this research surpasses the limitations of manual interpretation and existing automated systems. The goal is to create a robust CNN-based methodology for precise and reliable fracture classification, potentially revolutionizing current diagnostic practices. The dataset for this research is sourced from Kaggle's public medical image repository, ensuring a diverse range of fracture images. This study highlights CNNs' potential to significantly enhance diagnostic precision, leading to more effective treatments and improved patient care in orthopedics. The novelty lies in the unique application of CNN architecture for fracture classification, an area not extensively explored before. Testing results show a significant improvement in classification accuracy, with the proposed model achieving an accuracy rate of 0.9922 compared to ResNet50's 0.9844. The research suggests that adopting CNN-based systems in medical practice can enhance diagnostic accuracy, optimize treatment plans, and improve patient outcomes.
Optimizing convolutional neural network hyperparameters to enhance liver segmentation accuracy in medical imaging Purnama, Iwan; Windarto, Agus Perdana; Solikhun, Solikhun
International Journal of Electrical and Computer Engineering (IJECE) Vol 15, No 4: August 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v15i4.pp3876-3887

Abstract

Liver segmentation in medical imaging is a crucial step in various clinical applications, such as disease diagnosis, surgical planning, and evaluation of response to therapy, which require a high degree of precision for accurate results. This research focuses on increasing the accuracy of liver segmentation by optimizing hyperparameters in the convolutional neural network (CNN) model using the developed ResNet architecture. The uniqueness of this research lies in the application of hyperparameter optimization methods such as random search and Bayesian optimization, which allow broader and more efficient exploration than conventional approaches. The results show that the DeepLabV3Plus model (the proposed model) significantly outperforms the standard ResNet in the image segmentation task. DeepLabV3Plus shows excellent performance with an MIoU score of 0.965, a PA Score of 0.929, and a meager loss value of 0.011. These results show that DeepLabV3Plus is able to recognize and predict segmentation areas very accurately and consistently and minimize prediction errors effectively. In conclusion, the results of this study show a significant improvement in segmentation accuracy, with the optimized model providing better performance in the evaluation.